Skip to main content

Dynamics of Vortices and Dark Solitons in Polariton Superfluids

  • Chapter
Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

Abstract

In this chapter we describe some observations linked with turbulence in quantum fluids of polaritons. We imprint a given velocity and density to the polariton fluid by using an appropriate pulse intensity and wavevector. The flow is then perturbed by a natural defect or more interestingly, by engineered traps with a well defined potential change. The flow of the fluid is measured in a time resolved fashion through the use of homodyne detection. Both the intensity and the phase of the fluid can then be retrieved with a picosecond resolution. This allows observing the nucleation of quantized vortices, with the appropriate 2π phase shift around the core, or the growth of dark solitons in the wake of the obstacle. The dark solitons are observed to decay into vortex streets. Our results are compared to dynamical solutions of the Gross-Pitaevskii equation and a very good agreement is obtained allowing us to hold good confidence in our interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bénard, The cellular whirlpools in a liquid sheet transporting heat by convection in a permanent regime. Ann. Chim. Phys. 23, 62–101 (1901)

    Google Scholar 

  2. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  ADS  Google Scholar 

  3. P. Bergé, Y. Pomeau, C. Vidal, Order Within Chaos: Towards a Deterministic Approach to Turbulence (Wiley, New York, 1986)

    MATH  Google Scholar 

  4. T. Frisch et al., Transition to dissipation in a model superflow. Phys. Rev. Lett. 69, 1644–1647 (1992)

    Article  ADS  Google Scholar 

  5. T. Winiecki, J.F. McCann, C.S. Adams, Pressure drag in linear and nonlinear quantum fluids. Phys. Rev. Lett. 82, 5186–5189 (1999)

    Article  ADS  Google Scholar 

  6. T. Winiecki et al., Vortex shedding and drag in dilute Bose-Einstein condensates. J. Phys. B 33, 4069–4078 (2000)

    Article  ADS  Google Scholar 

  7. L.D. Landau, The theory of superfluidity of helium II. J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  8. C.F. Barenghi, R.J. Donnelly, W.F. Vinen (eds.), Quantized Vortex Dynamics and Superfluid Turbulence (Springer, Berlin, 2001)

    MATH  Google Scholar 

  9. W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128, 167 (2002)

    Article  ADS  Google Scholar 

  10. P.C. Haljan, I. Coddington, P. Engels, E.A. Cornell, Driving Bose-Einstein-condensate vorticity with a rotating normal cloud. Phys. Rev. Lett. 87, 210403 (2001)

    Article  ADS  Google Scholar 

  11. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  12. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3972 (1995)

    Article  ADS  Google Scholar 

  13. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001)

    Article  ADS  Google Scholar 

  14. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999)

    Article  ADS  Google Scholar 

  15. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001)

    Article  ADS  Google Scholar 

  16. S. Inouye et al., Observation of vortex phase singularities in Bose-Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001)

    Article  ADS  Google Scholar 

  17. T.W. Neely et al., Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  18. S.A. Moskalenko, Reversible optico-hydrodynamic phenomena in a nonideal exciton gas. Sov. Phys., Solid State 4, 199–204 (1962)

    Google Scholar 

  19. J.M. Blatt, K.W. Böer, W. Brandt, Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962)

    Article  ADS  Google Scholar 

  20. L.V. Keldysh, A.N. Kozlov, Collective properties of excitons on semiconductors. Sov. Phys. JETP-USSR 27, 521–528 (1968)

    ADS  Google Scholar 

  21. E. Fortin, S. Fafard, A. Mysyrowicz, Exciton transport in Cu2O: Evidence for excitonic superfluidity? Phys. Rev. Lett. 70, 3951–3954 (1993)

    Article  ADS  Google Scholar 

  22. L.L. Chase, N. Peyghambarian, G. Grynberg, A. Mysyrowicz, Evidence for Bose-Einstein condensation of biexcitons in CuCl. Phys. Rev. Lett. 42, 1231–1234 (1979)

    Article  ADS  Google Scholar 

  23. D. Hulin, A. Mysyrowicz, C. Benoit à la Guillaume, Evidence for Bose-Einstein statistics of an exciton gas. Phys. Rev. Lett. 45, 1970–1973 (1980)

    Article  ADS  Google Scholar 

  24. C. Weisbuch, N. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  Google Scholar 

  25. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  26. R. Ballili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2008)

    Article  ADS  Google Scholar 

  27. H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007)

    Article  ADS  Google Scholar 

  28. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010)

    Article  Google Scholar 

  29. S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  30. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  31. K. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–709 (2008)

    Article  Google Scholar 

  32. K. Lagoudakis, T. Ostatnick, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–977 (2009)

    Article  ADS  Google Scholar 

  33. G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex–antivortex pair in an exciton–polariton condensate. Nat. Phys. 7, 129–133 (2011)

    Article  Google Scholar 

  34. I. Carusotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  35. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaître, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–294 (2009)

    Article  ADS  Google Scholar 

  36. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009)

    Article  Google Scholar 

  37. R. Cerna et al., Coherent optical control of the wave function of zero-dimensional exciton polaritons. Phys. Rev. B 80, 121309(R) (2009)

    Article  ADS  Google Scholar 

  38. G. Nardin et al., Selective photoexcitation of confined exciton–polariton vortices. Phys. Rev. B 82, 073303 (2010)

    Article  ADS  Google Scholar 

  39. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  ADS  Google Scholar 

  40. M. Saba et al., High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001)

    Article  ADS  Google Scholar 

  41. S. Pigeon, I. Carusotto, C. Ciuti, Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83, 144513 (2011)

    Article  ADS  Google Scholar 

  42. See Chap. 7 by Daniele Sanvitto

    Google Scholar 

  43. G. Nardin, Phase-resolved imaging of exciton polaritons. Thèse EPFL, no 5002 (2011). http://library.epfl.ch/theses/?nr=5002

  44. R.I. Kaitouni et al., Phys. Rev. B 74, 155311 (2006)

    Article  ADS  Google Scholar 

  45. G. Nardin et al., Phase-resolved imaging of confined exciton–polariton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010)

    Article  ADS  Google Scholar 

  46. T. Kreis, Holographic Interferometry-Principles and Methods (Akademie Verlag, Berlin, 1996), 351 pp.

    Google Scholar 

  47. N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947)

    Google Scholar 

  48. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003), p. 56

    MATH  Google Scholar 

  49. V. Kohnle, Y. Léger, M. Wouters, M. Richard, M.T. Portela-Oberli, B. Deveaud-Plédran, From single particle to superfluid excitations in a polariton gas. Phys. Rev. Lett. 106, 255302 (2011)

    Article  ADS  Google Scholar 

  50. D. Sanvitto et al., Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010)

    Article  Google Scholar 

  51. G. Roumpos et al., Single vortex–antivortex pair in an exciton–polariton condensate. Nat. Phys. 7, 129–133 (2011)

    Article  Google Scholar 

  52. D.N. Krizhanovskii et al., Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104, 126402 (2010)

    Article  ADS  Google Scholar 

  53. T. Freixanet, B. Sermage, J. Bloch et al., Annular resonant Rayleigh scattering in the picosecond dynamics of cavity polaritons. Phys. Rev. B 60, R8509–R8512 (1999)

    Article  ADS  Google Scholar 

  54. R. Houdre, C. Weisbuch, R.P. Stanley et al., Coherence effects in light scattering of two-dimensional photonic disordered systems: Elastic scattering of cavity polaritons. Phys. Rev. B 61, 13333–13336 (2000)

    Article  ADS  Google Scholar 

  55. W. Langbein, J.M. Hvam, Elastic scattering dynamics of cavity polaritons: Evidence for time-energy uncertainty and polariton localization. Phys. Rev. Lett. 88, 047401 (2002)

    Article  ADS  Google Scholar 

  56. S. Haacke, R.A. Taylor, R. Zimmermann et al., Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence. Phys. Rev. Lett. 78, 2228–2231 (1997)

    Article  ADS  Google Scholar 

  57. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  58. T. Winiecki, J.F. McCann, C.S. Adams, Pressure drag in linear and nonlinear quantum fluids. Phys. Rev. Lett. 82, 5186–5189 (1999)

    Article  ADS  Google Scholar 

  59. T.W. Neely et al., Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  60. T. Frisch et al., Transition to dissipation in a model superflow. Phys. Rev. Lett. 69, 1644–1647 (1992)

    Article  ADS  Google Scholar 

  61. D. Sanvitto, A. Amo, F.P. Laussy, A. Lemaître, J. Bloch, C. Tejedor, L. Vina, Polariton condensates put in motion. Nanotechnology 21, 134025 (2010)

    Article  ADS  Google Scholar 

  62. W. Zhang, D.F. Walls, B.C. Sanders, Phys. Rev. Lett. 72, 60 (1994)

    Article  ADS  Google Scholar 

  63. A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Solitary waves in clouds of Bose-Einstein condensed atoms. Phys. Rev. Lett. 83, 5198–5201 (2007)

    Google Scholar 

  64. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Phys. Rev. Lett. 45, 1095 (1980)

    Article  ADS  Google Scholar 

  65. T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1971)

    Article  ADS  Google Scholar 

  66. M. Chen, M.A. Tsankov, J.M. Nash, C.E. Patton, Microwave magnetic-envelope dark solitons in yttrium iron garnet thin films. Phys. Rev. Lett. 45, 1095 (1980). Ming

    Article  Google Scholar 

  67. D.J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments. J. Phys. A, Math. Theor. 43, 213001 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  68. G.A. El, A. Gammal, A.M. Kamchatnov, Oblique dark solitons in supersonic flow of a Bose-Einstein condensate. Phys. Rev. Lett. 97, 180405 (1980)

    Article  Google Scholar 

  69. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  70. J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt et al., Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  71. B. Kadomtsev, V. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)

    ADS  MATH  Google Scholar 

  72. V.E. Zakharov, JETP Lett. 22, 172 (1975). http://www.jetpletters.ac.ru/ps/1526/article_23342.shtml

    ADS  Google Scholar 

  73. G. McDonald, K. Syed, W. Firth, Opt. Commun. 95, 281 (1993)

    Article  ADS  Google Scholar 

  74. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    Article  ADS  Google Scholar 

  75. V.A. Mironov, A.I. Smirnov, L.A. Smirnov, J. Exp. Theor. Phys. 110, 877 (2010)

    Article  ADS  Google Scholar 

  76. G. Grosso, G. Nardin, F. Morier-Genoud, Y. Léger, B. Deveaud-Plédran, Soliton instabilities and vortex street formation in a polariton quantum fluid. Phys. Rev. Lett. 83, 5198 (1999)

    Article  Google Scholar 

  77. A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011)

    Article  ADS  Google Scholar 

  78. M. Sich, D.N. Krizhanovskii, M.S. Skolnick, A.V. Gorbach, R. Hartley, D.V. Skryabin, E.A. Cerda-Méndez, K. Biermann, R. Hey, P.V. Santos, Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photonics 6, 50 (2012)

    Article  ADS  Google Scholar 

  79. G. Nardin, Y. Léger, B. Pietka, F. Morier-Genoud, B. Deveaud-Plédran, Phys. Rev. B 82, 045304 (2010)

    Article  ADS  Google Scholar 

  80. R. Cerna et al., Phys. Rev. B 80, 121309 (2009)

    Article  ADS  Google Scholar 

  81. R. Cerna, T.K. Paraïso, Y. Léger, M. Wouters, F. Morier-Genoud, M.T. Portella-Oberli, B. Deveaud-Plédran, Phys. Rev. B 81, 113306 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is inspired from the successive PhD works in my group (but not only as I integrate in this review the works of Pascale Senellart, Maxime Richard, Jacek Kasprzak and others), over the passed 15 years, starting from the PhD of Michele Saba, when we first envisaged the possibility of condensation of polaritons and designed an original way to produce efficient trapping of polaritons. It has been more particularly based on the PhD work of Gael Nardin, and on the ongoing work of Gabriele Grosso. The sample that we have used in the present study has been grown By François Morier-Genoud, with the very clever techniques allowing to prepare the mesas. This work has been made possible by what I call the dream team of LOEQ with, in order of appearance on stage, Stefan Kundermann, Jacek Kasprzak, Reda Idrissi Kaitouni, Ounsi El Daïf, Konstantinos Lagoudakis, Taofiq Paraïso, Gael Nardin, Roland Cerna, Verena Kohnle, Francesco Manni and Gabriele Grosso. It has also been supported very strongly by a group of extremely talented postdocs, that I wish to congratulate warmly for their outstanding work: Maxime Richard, Augustin Baas, Thierry Guillet, Barbara Pietka and, last but not least Yoan Léger. I also would like to convey my most sincere thanks to the theoreticians who allowed us to understand our results, by spending enough time with us, and by putting into simple words the results of their equations. In particular, Natalia Berloff, Michiel Wouters, Vincenzo Savona, Cristiano Ciuti, Alexei Kavokin and Yuri Rubo deserve very special acknowledgements. Antonio Quattropani and Paolo Schwendiman have also helped with many discussions and their indefectible support of theorist-experimentalist collaborations. Last, but not least, this work would not have been possible without the very close collaboration with the group of Dang in Grenoble, and in particular without the very high quality samples prepared by Régis André. The work has been carried out within the framework of the Quantum Photonics National Center of Competence in research financed by the Swiss National Science Foundation through the Quantum Photonics National Center of excellence in research and through successive SNF projects 2000020-135003, 200020-134789, 206021-128816, 206021-121496, 200020-107612. Complementary funding for conferences and meetings has been obtained through the Latsis Foundation, the Polatom network of the European Science Foundation. A King Saud University associate professorship is also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Deveaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deveaud, B., Nardin, G., Grosso, G., Léger, Y. (2013). Dynamics of Vortices and Dark Solitons in Polariton Superfluids. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_6

Download citation

Publish with us

Policies and ethics