Skip to main content

Cyclodextrin-Based Chiral Stationary Phases for Supercritical Fluid Chromatography

  • Chapter
  • First Online:
Modified Cyclodextrins for Chiral Separation
  • 1280 Accesses

Abstract

In this chapter, a general introduction of supercritical fluid and supercritical fluid chromatography (SFC) is firstly provided. An overview of commercially available or newly developed packed columns for enantiomeric separation based on cyclodextrin chiral stationary phases (CSPs) in SFC is then presented. The correlations between cyclodextrin structures and their enantioselectivities are also discussed. Furthermore, the analytical conditions for optimization of enantiomeric separation with these cyclodextrin-based CSPs are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen W, Rajendran A (2009) Enantioseparation of flurbiprofen on amylose-derived chiral stationary phase by supercritical fluid chromatography. J Chromatogr A 1216:8750–8758

    Article  CAS  Google Scholar 

  2. Michels A, Blaisse B, Michels C (1937) The isotherms of co2 in the neighborhood of the critical point and round the coexistence line. Proc R Soc Lond A 160:358–375

    Article  CAS  Google Scholar 

  3. Rock PA (2003) Chemical thermodynamics. University Science, New York, pp 3–23

    Google Scholar 

  4. Palmleri MD (1988) An introduction to supercritical fluid chromatography part 1: principles and instrumentation. J Chem Educ 1988(10):A254–A259

    Article  Google Scholar 

  5. Rajendran A, Johannsen M, Mazzotti M et al (2005) Enantioseparation of 1-phenyl-1-propanol on Chiralcel OD by supercritical fluid chromatography. I. Linear isotherm. J Chromatogr A 1076:183–188

    Article  CAS  Google Scholar 

  6. King JW, Hill HH, Lee ML (1993) Physical methods of chemistry series, vol X, 2nd edn. Wiley, New York, pp 112–256

    Google Scholar 

  7. Reid RC, Prauznitz JM, Poling BE (2001) The properties of gases and liquids, 5th edn. McGraw Hill Book Co., New York, pp 125–253

    Google Scholar 

  8. Klesper E, Corwin AH, Turner DA (1962) High pressure gas chromatography above critical temperature. J Org Chem 27:700–701

    Article  CAS  Google Scholar 

  9. Gere DR, Board R, McManigill D (1982) Supercritical fluid chromatography with small particle diameter packed columns. Anal Chem 54:736–740

    Article  CAS  Google Scholar 

  10. Chen W, Arvind R (2009) Enantioseparation of flurbiprofen on amylose-derived chiral stationary phase by supercritical fluid chromatography. J Chromatogr A 1216:8750–8758

    Article  CAS  Google Scholar 

  11. Upnmoor D, Brunner G (1989) Retention of acidic and basic compounds in packed column supercritical fluid chromatography. Chromatographia 28:449–454

    Article  CAS  Google Scholar 

  12. Snyder LR (1974) Classification of the solvent properties of common liquids. J Chromatogr 92:223–230

    Article  CAS  Google Scholar 

  13. Schneider RL (1975) Physical properties of some organic solvents. Eastman Org Chem Bull 47:1–12

    Google Scholar 

  14. Cantrell GO, Stringham RW, Blackwell JA et al (1996) Effect of various modifiers on selectivity in packed-column subcritical and supercritical fluid chromatography. Anal Chem 68:3645–3650

    Article  CAS  Google Scholar 

  15. Phinney KW (2000) Separating drug enantiomers is ushering in a renaissance of sub- and supercritical fluid chromatography. Anal Chem 72:205A–211A

    Article  Google Scholar 

  16. Rajendran A, Stephanie P, Monika J (2005) Enantioseparation of 1-phenyl-1-propanol by supercritical fluid-simulated moving bed chromatography. J Chromatogr A 1092:55–64

    Article  CAS  Google Scholar 

  17. Taylor LT (2010) Supercritical fluid chromatography. Anal Chem 82:4925–4935

    Article  CAS  Google Scholar 

  18. Akgerman A, Giridhar M (1994) Fundamentals of solid extraction by supercritical fluids. In: Sengers JMH, Kiran E (eds) Supercritical fluids- fundamentals for applications. Klüwer Academic Publishers, Boston, pp 669–696

    Chapter  Google Scholar 

  19. Giddings JC, Myers MN, McLaren L, Keller RA (1968) High pressure gas chromatography of nonvolatile species. Compressed gas is used to cause migration of intractable solutes. Science 162:67–73

    Article  CAS  Google Scholar 

  20. Petersson P, Markides KE (1994) Chiral separations performed by supercritical fluid chromatography. J Chromatogr A 666:381–394

    Article  CAS  Google Scholar 

  21. Williams KL, Sander LC, Wise SA (1997) Comparison of liquid and supercritical fluid chromatography for the separation of enantiomers on chiral stationary phases. J Pharm Biomed Anal 15:1789–1799

    Article  CAS  Google Scholar 

  22. Williams KL, Sander LC, Wise SA (1996) Comparison of liquid and supercritical fluid chromatography using naphthylethylcarbamoylated-β-cyclodextrin chiral stationary phases. J Chromatogr A 746:91–101

    Article  CAS  Google Scholar 

  23. Wang Z, Jin O, Willy RGB (2008) Recent developments of enantioseparation techniques for adrenergic drugs using liquid chromatography and capillary electrophoresis: a review. J Chromatogr B 862:1–14

    Article  CAS  Google Scholar 

  24. Novotny M, Springston SR, Lee ML (1981) Capillary supercritical fluid chromatography. Anal Chem 53:407A–414A

    Article  CAS  Google Scholar 

  25. Blomberg LG, Demirbiiker M, Hsgglund I et al (1994) Supercritical fluid chromatography: open tubular vs. packed columns. TrAC Trends Anal Chem 3:126–137

    Article  Google Scholar 

  26. Rajendran A, Kröuchia O, Mazzotti M et al (2005) Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. J Chromatogr A 1092:149–160

    Article  CAS  Google Scholar 

  27. Phinney KW, Sander LC (2002) Preliminary evaluation of a standard reference material for chiral stationary phases used in liquid and supercritical fluid chromatography. Anal Bioanal Chem 372:101–108

    Article  CAS  Google Scholar 

  28. Leyder NB, Caude M, Tambute A (1995) A comparison of LC and SFC for cellulose-and amylose-derived chiral stationary phases. Chirality 7:311–325

    Article  Google Scholar 

  29. Cantrell GO, Stringham RW, Blackwell JA (1996) Effect of various modifiers on selectivity in packed-column subcritical and supercritical fluid chromatography. Anal Chem 68:3645–3650

    Article  CAS  Google Scholar 

  30. Salvador A, Jaime MA (1996) Supercritical fluid chromatography in drug analysis: a literature survey. J Anal Chem 356:109–122

    CAS  Google Scholar 

  31. Jiang C, Ren Q (2003) Study on retention factor and resolution of tocopherols by supercritical fluid chromatography. J Chromatogr A 1005:155–164

    Article  CAS  Google Scholar 

  32. Turne C, King JW (2001) Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J Chromatogr A 936:215–237

    Article  CAS  Google Scholar 

  33. El-Saeid MH (2003) Pesticide residues in canned foods, fruits, and vegetables: the application of supercritical fluid extraction and chromatographic techniques in the analysis. Scientific World Journal 3:1314–1326

    Article  Google Scholar 

  34. Hirata Y, Sogabe I (2004) Separation of fatty acid methyl esters by comprehensive two-dimensional supercritical fluid chromatography with packed columns and programming of sampling duration. Anal Bioanal Chem 378:1999–2003

    Article  CAS  Google Scholar 

  35. Mourier PA, Eliot E, Caude MH et al (1985) Supercritical and subcritical fluid chromatography on a chiral stationary phase for the resolution of phosphine oxide enantiomers. Anal Chem 57:2819–2823

    Article  CAS  Google Scholar 

  36. Li H, Hu X (1999) Chiral drug separation by supercritical fluid chromatography. Se Pu 17:166–170

    CAS  Google Scholar 

  37. Gasparrini F, Misiti D, Villani C (2001) High-performance liquid chromatography chiral stationary phases based on low-molecular-mass selectors. J Chromatogr A 906:35–50

    Article  CAS  Google Scholar 

  38. Danel C, Barthelemy C, Azarzar D et al (2007) Analytical and semipreparative enantioseparation of 9-hydroxyrisperidone, the main metabolite of risperidone, using high-performance liquid chromatography and capillary electrophoresis: validation and determination of enantiomeric purity. J Chromatogr A 1163:228–236

    Article  CAS  Google Scholar 

  39. Francois Y, Varenne A, Juillerat E et al (2007) Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis. J Chromatogr A 1155:134–141

    Article  CAS  Google Scholar 

  40. Mangelings D, Heyden YV (2008) Chiral separations in sub- and supercritical fluid chromatography. J Sep Sci 31:1252–1273

    Article  CAS  Google Scholar 

  41. Wang R, Ong T, Ng S (2008) Synthesis of cationic β-cyclodextrin derivatives and their applications as chiral stationary phases for high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 1203:185–192

    Article  CAS  Google Scholar 

  42. Francotte ER (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    Article  CAS  Google Scholar 

  43. Tang WH, Muderawan IW, Ong TT et al (2005) A family of single-isomer positively charged cyclodextrins as chiral selectors for capillary electrophoresis: mono-6A-butylammonium-6A-deoxy-β-cyclodextrin tosylate. Electrophoresis 26:3125–3133

    Article  CAS  Google Scholar 

  44. Tang WH, Ong TT, Ng SC (2007) Chiral separation of dansyl amino acids in capillary electrophoresis using mono-(3-methyl-imidazolium)-β-cyclodextrin chloride as selector. J Sep Sci 30:1343–1349

    Article  CAS  Google Scholar 

  45. Lai XH, Ng SC (2004) Preparation and chiral recognition of a novel chiral stationary phase for high-performance liquid chromatography, based on mono(6A-N-allylamino-6A-deoxy)-perfunctionalized β-cyclodextrin and covalently bonded silica gel. J Chromatogr A 1031:135–142

    Article  CAS  Google Scholar 

  46. Ong TT, Wang RQ, Muderawan IW et al (2008) Synthesis and application of mono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride as chiral stationary phases for high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 1182:136–140

    Article  CAS  Google Scholar 

  47. Rajendran A, Peper S, Johannsen M (2005) Enantioseparation of 1-phenyl-1-propanol by supercritical fluid-simulated moving bed chromatography. J Chromatogr A 1092:55–64

    Article  CAS  Google Scholar 

  48. Cserhati T, Forgacs E (2003) Cyclodextrins in chromatography. Royal Society of Chemistry, Cambridge, pp 43–74

    Book  Google Scholar 

  49. Zhong Q, He L, Beesley TE et al (2006) Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J Chromatogr A 1115:19–45

    Article  CAS  Google Scholar 

  50. Armstrong DW, Zukowski J (1994) Direct enantiomeric resolution of monoterpene hydrocarbons via reversed-phase high-performance liquid chromatography with an α-cyclodextrin bonded stationary phase. J Chromatogr A 666:445–448

    Article  CAS  Google Scholar 

  51. Zhang Y, Wu DR, Wang-Iverson DB (2005) Enantioselective chromatography in drug discovery. Drug Discov Today 10:571–577

    Article  CAS  Google Scholar 

  52. Armstrong DW, Rundlett KL, Nair UB (1996) Enantioresolution of amphetamine, methamphetamine, and deprenyl (selegiline) by LC, GC, and CE. Curr Sep 15:57–61

    CAS  Google Scholar 

  53. Williams KL, Sander LC, Wise SA (1996) Use of a naphthylethylcarbamoylated-β-cyclodextrin chiral stationary phase for the separation of drug enantiomers and related compounds by sub- and supercritical fluid chromatography. Chirality 8:325–331

    Article  CAS  Google Scholar 

  54. Stalcup AM, Chang SC, Armstrong DW (1991) Effect of the configuration of the substituents of derivatized β-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid chromatography. J Chromatogr A 540:113–128

    Article  CAS  Google Scholar 

  55. Williams KL, Sander LC (1997) Enantiomer separations on chiral stationary phases in supercritical fluid chromatography. J Chromatogr A 785:149–158

    Article  CAS  Google Scholar 

  56. Mourier P, Sassiat P, Caude M (1986) Retention and selectivity in carbon dioxide supercritical fluid chromatography with various stationary phases. J Chromatogr A 353:61–75

    Article  CAS  Google Scholar 

  57. Kot A, Sandra P, Venema A (1994) Sub- and supercritical fluid chromatography on packed columns: a versatile tool for the enantioselective separation of basic and acidic drugs. J Chromatogr Sci 32:439–448

    Article  CAS  Google Scholar 

  58. Macaudiere P, Caude M, Rosset R (1987) Emic amides and phosphine oxides on a beta-cyclodextrin-bonded stationary phase by subcritical fluid chromatography. J Chromatogr 405:135–143

    Article  CAS  Google Scholar 

  59. Kasai HF, Tsubuki M, Matsuo S et al (2005) Sub- and supercritical chiral separation of racemic compounds on columns with stationary phases having different functional groups. Chem Pharm Bull 53:1270–1276

    Article  CAS  Google Scholar 

  60. Duval R, Leveque H, Prigent Y et al (2001) Enantioseparation of aminoglutethimide and thalidomide by high performance liquid chromatography or supercritical fluid chromatography on mono-2 and mono-6-O-pentenyl-beta-cyclodextrin-based chiral stationary phases. Biomed Chromatogr 15:202–206

    Article  CAS  Google Scholar 

  61. Tang WH, Muderawan IW, Ng SC, Chan HSO (2006) Enantioselective separation in capillary electrophoresis using a novel mono-6A-propylammonium-β-cyclodextrin as chiral selector. Anal Chim Acta 555:63–67

    Article  CAS  Google Scholar 

  62. Tang WH, Muderawan IW, Ng SC et al (2005) Enantiomeric separation of 8 hydroxy, 10 carboxylic and 6 dansyl amino acids by mono(6-amino-6-deoxy)-β-cyclodextrin in capillary electrophoresis. Anal Chim Acta 554:156–162

    Article  CAS  Google Scholar 

  63. Tang WH, Muderawan IW, Ng SC et al (2005) Synthesis and application of mono-6-ammonium-6-deoxy-β-cyclodextrin chloride as chiral selector for capillary electrophoresis. J Chromatogr A 1094:187–191

    Article  CAS  Google Scholar 

  64. Tang WH, Muderawan IW, Ng SC et al (2005) Enantioseparation of acidic enantiomers in capillary electrophoresis using a novel single-isomer of positively charged β-cyclodextrin: mono-6A-N-pentylammonium-6A-deoxy-β-cyclodextrin chloride. J Chromatogr A 1091:152–157

    Article  CAS  Google Scholar 

  65. Tang WH, Muderawan IW, Ong TT et al (2005) Enantioseparation of dansyl amino acids by a novel permanently positively charged single-isomer cyclodextrin: mono-6-N-allylammonium-6-deoxy-β-cyclodextrin chloride by capillary electrophoresis. Anal Chim Acta 546:119–125

    Article  CAS  Google Scholar 

  66. Muderawan IW, Tang WH, Ng SC (2005) Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes. Tetrahedron Lett 46:1747–1749

    Article  CAS  Google Scholar 

  67. Wang RQ, Ong TT, Tang WH et al (2012) Cationic cyclodextrins chemically-bonded chiral stationary phases for high-performance liquid chromatography. Anal Chim Acta 718:121–129

    Article  CAS  Google Scholar 

  68. Wang RQ, Ong TT, Ng SC (2012) Chemically bonded cationic β-cyclodextrin derivatives and their applications in supercritical fluid chromatography. J Chromatogr A 1224:97–103

    Article  CAS  Google Scholar 

  69. Yi G, Bradshaw JS, Rossiter BE et al (1993) Novel cyclodextrin-oligosiloxane copolymers for use as stationary phases to separate enantiomers in open tubular column supercritical fluid chromatography. J Org Chem 58:2561–2565

    Article  CAS  Google Scholar 

  70. Armstrong DW, Tang Y, Ward T (1993) Derivatized cyclodextrins immobilized on fused-silica capillaries for enantiomeric separations via capillary electrophoresis, gas chromatography, or supercritical fluid chromatography. Anal Chem 65:1114–1117

    Article  CAS  Google Scholar 

  71. Petersson P, Markides KE, Lee ML (1992) Chromatographic evaluation of chiral (1R-trans)-N, N′ -1,2-cyclohexylenebisbenzamide-oligodimethylsiloxane copolymeric stationary phases for capillary supercritical fluid chromatography. J Microcolumn Sep 4:155–162

    Article  CAS  Google Scholar 

  72. Yi G, Bradshaw JS, Rossiter BE et al (1993) New permethyl-substituted β-cyclodextrin polysiloxanes for use as chiral stationary phases in open tubular column chromatography. J Org Chem 58:4844–4850

    Article  Google Scholar 

  73. Bradehaw JS, Agganvd SK, Lee ML (1987) Polysiloxanes containing thermally stable chiral amide side-chains for capillary gas and supercritical fluid chromatography. J Chromatogr A 405:169–177

    Article  Google Scholar 

  74. Peterssona P, Reeseb SL, Lee ML (1994) Evaluation of β-cyclodextrin-based chiral stationary phases for capillary column supercritical fluid chromatography. J Chromatogr A 684:297–309

    Article  Google Scholar 

  75. Wilkins SM, Taylor DR, Smith RJ (1995) Temperature dependence of chiral discrimination in supercritical fluid chromatography and high-performance liquid chromatography. J Chromatogr A 697:587–590

    Article  CAS  Google Scholar 

  76. Steuer W, Schindler M, Schill G et al (1988) Supercritical fluid chromatography with ion-pairing modifiers separation of enantiomeric 1,2-aminoalcohols as diastereomeric ion pairs. J Chromatogr 447:287–296

    CAS  Google Scholar 

  77. Gyllenhaal O, Karlsson A (2000) Enantioresolution of dihydropyridine substituted acid by supercritical fluid chromatography on hypercarb® with Z-(L)-arginine as chiral counter ion. Chromatographia 52:351–355

    Article  CAS  Google Scholar 

  78. Salvador A, Herbreteau B, Dreux M et al (2001) Chiral supercritical fluid chromatography on porous graphitic carbon using commercial dimethyl β-cyclodextrins as mobile phase additive. J Chromatogr A 929:101–112

    Article  CAS  Google Scholar 

  79. Salvador A, Herbreteau B, Dreux M (2001) Preliminary studies of supercritical-fluid chromatography on porous graphitic carbon with methylated cyclodextrin as chiral selector. Chromatographia 53:207–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dai, Y., Tang, W., Ng, SC. (2013). Cyclodextrin-Based Chiral Stationary Phases for Supercritical Fluid Chromatography. In: Tang, W., Ng, SC., Sun, D. (eds) Modified Cyclodextrins for Chiral Separation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37648-1_4

Download citation

Publish with us

Policies and ethics