Skip to main content

Summary

This Chapter describes the concepts and basics of RC. The standard IM and the plug-in scheme structure are used to introduce the design, as well as stability and robustness approaches that are traditionally employed in this technique. The performance of the RC interface of frequency variations or uncertainty is analyzed using the magnitude response of the IM and the closed loop phase behavior of the system. These response characteristics evidence the dramatic loss of performance that occurs when the period of the reference/disturbance signal is time varying or uncertain. Section 2.1 introduces the IM, the controller structure, stability conditions and design criteria in RC, while in Section 2.2 the performance degradation under varying frequency conditions is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, W.S., Suh, I.H., Kim, T.W.: Analysis and design of two types of digital repetitive control systems. Automatica 31(5), 741–746 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chew, K.K., Tomizuka, M.: Steady-state and stochastic performance of a modified discrete-time prototype repetitive controller. Journal of Dynamic Systems, Measurement, and Control 112, 35–41 (1990)

    Article  MATH  Google Scholar 

  3. Costa-Castelló, R., Nebot, J., Griñó, R.: Demonstration of the internal model principle by digital repetitive control of an educational laboratory plant. IEEE Transactions on Education 48(1), 73–80 (2005)

    Article  Google Scholar 

  4. Escobar, G., Hernandez-Briones, P., Torres-Olguin, R., Valdez, A.: A repetitive-based controller for the compensation of 6l±1 harmonic components. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 3397–3402 (2007)

    Google Scholar 

  5. Escobar, G., Torres-Olguin, R., Valdez, A., Martinez-Montejano, M., Hernandez-Briones, P.: Practical modifications of a repetitive-based controller aimed to compensate 6l+1 harmonics. In: Proceedings of the 11th IEEE International Power Electronics Congress, CIEP 2008, pp. 90–95 (August 2008)

    Google Scholar 

  6. Francis, B., Wonham, W.: Internal model principle in control theory. Automatica 12, 457–465 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Griñó, R., Costa-Castelló, R.: Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances. Automatica 19(4), 1060–1068 (2004)

    Google Scholar 

  8. Hillerström, G., Lee, R.C.: Trade-offs in repetitive control. Technical Report CUED/F-INFENG/TR 294, University of Cambridge (June 1997)

    Google Scholar 

  9. Inoue, T.: Practical repetitive control system design. In: Proceedings of the 29th IEEE Conference on Decision and Control, pp. 1673–1678 (1990)

    Google Scholar 

  10. Inoue, T., Nakano, M., Kubo, T., Matsumoto, S., Baba, H.: High accuracy control of a proton synchroton magnet power supply. In: Proceedings of the 8th IFAC World Congress, pp. 216–220 (1981)

    Google Scholar 

  11. Leyva-Ramos, J., Escobar, G., Martinez, P., Mattavelli, P.: Analog circuits to implement repetitive controllers for tracking and disturbance rejection of periodic signals. IEEE Transactions on Circuits and Systems II: Express Briefs 52(8), 466–470 (2005)

    Article  Google Scholar 

  12. Tomizuka, M., Tsao, T.-C., Chew, K.-K.: Analysis and synthesis of discrete-time repetitive controllers. Journal of Dynamic Systems, Measurement, and Control 111, 353–358 (1989)

    Article  MATH  Google Scholar 

  13. Tsao, T.-C., Tomisuka, M.: Adaptive and repetitive digital control algorithms for non circular machining. In: Proceedings of the 1988 American Control Conference (1988)

    Google Scholar 

  14. Tsao, T.-C., Tomizuka, M.: Robust adaptive and repetitive digital tracking control and application to a hydraulic servo for noncircular machining. Journal of Dynamic Systems, Measurement, and Control 116(1), 24–32 (1994)

    Article  MATH  Google Scholar 

  15. Weiss, G., Häfele, M.: Repetitive control of MIMO systems using H  ∞  design. Automatica 35(7), 1185–1199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yamamoto, Y.: Learning control and related problems in infinite-dimensional systems. In: Proceedings of the European Control Conference, pp. 191–222 (1993)

    Google Scholar 

  17. Yeol, J.W., Longman, R.W., Ryu, Y.S.: On the settling time in repetitive control systems. In: Proceedings of 17th International Federation of Automatic Control (IFAC) World Congress (July 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán A. Ramos .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramos, G.A., Costa-Castelló, R., Olm, J.M. (2013). Repetitive Control. In: Digital Repetitive Control under Varying Frequency Conditions. Lecture Notes in Control and Information Sciences, vol 446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37778-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37778-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37777-8

  • Online ISBN: 978-3-642-37778-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics