Skip to main content

Consecutive Repeating State Cycles Determine Periodic Points in a Turing Machine

  • Conference paper
Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 483))

  • 860 Accesses

Abstract

The Turing machine is studied with new methods motivated by the notion of recurrence in classical dynamical systems theory. The state cycle of a Turing machine is introduced. It is proven that each consecutive repeating state cycle in a Turing machine determines a unique periodic configuration (point) and vice versa. This characterization is a periodic point theorem for Turing machines. A Turing machine is defined to be periodic if it has at least one periodic configuration or it only has halting configurations. Using the notion of a prime directed edge and a mathematical operation called edge pattern substitution, a search procedure finds consecutive repeating state cycles. If the Turing machine is periodic, then this procedure eventually finds each periodic point or this procedure determines that the machine has only halting configurations.Newmathematical techniques are demonstrated such as edge pattern substitution and prime directed edge sequences that could be quite useful in the further study of the aperiodic Turing machines. The aperiodicity appears to play an integral role in the undecidability of the Halting problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, R.: The undecidability of the domino problem. Memoirs of the American Mathematical Society (66) (1966)

    Google Scholar 

  2. Blondel, V., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoretical Computer Science 289(1), 573–590 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowen, R.: Periodic points and measures for Axiom A diffeomorphisms. Transactions for American Mathematical Society 154, 377–397 (1971)

    MathSciNet  MATH  Google Scholar 

  4. Brouwer, L.E.J.: Uber Abbildung von Mannigfaltigkeiten. Mathematische Annalen 71, 97–115 (1912)

    Article  MATH  Google Scholar 

  5. Davis, M.: Computability and Unsolvability. Dover Publications, New York (1982)

    MATH  Google Scholar 

  6. Fiske, M.S.: Non-autonomous dynamical systems applied to neural computation. PhD thesis, Northwestern University. UMI Microform 9714584 (1996)

    Google Scholar 

  7. Hopf, H.: Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Mathematische Annalen 96, 209–224 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hooper, P.K.: The Undecidability of the Turing Machine Immortality Problem. Journal of Symbolic Logic 31(2) (1966)

    Google Scholar 

  9. Kürka, P.: On Topological Dynamics of Turing Machines. Theoretical Computer Science 174, 203–216 (1997)

    Article  MathSciNet  Google Scholar 

  10. Mueller, L.: newLISP Language (1999-2012), http://www.newlisp.org/

  11. Poincare, H.: Sur les courbes definies par une equation differentielle. Oeuvres 1 (1892)

    Google Scholar 

  12. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. ser. 2 42(Parts 3 and 4), 230–265 (1936); [Turing, 1937a] A correction, ibid. 43, 544–546 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stephen Fiske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiske, M.S. (2013). Consecutive Repeating State Cycles Determine Periodic Points in a Turing Machine. In: Kyamakya, K., Halang, W., Mathis, W., Chedjou, J., Li, Z. (eds) Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering. Studies in Computational Intelligence, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37781-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37781-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37780-8

  • Online ISBN: 978-3-642-37781-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics