Skip to main content

Cell Motility

  • Chapter
  • First Online:
Stochastic Foundations in Movement Ecology

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 1513 Accesses

Abstract

The topic of cell motility can be actually seen as many fields into one, due to the diversity of perspectives from which it can be studied. Significant advances, for example, in the imaging techniques both in vivo and in vitro have lead in the last decades to an increasing understanding of the biophysical and molecular aspects of cell movement. Such aspects have been beautifully compiled in the book by Dennis Bray [10]. More physical approaches have also been explored, with the emphasis frequently put in the diffusion properties of cells in combination with hydrodynamic aspects to explain motility in liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9(2), 147–177 (1980). doi:10.1007/BF00275919. http://dx.doi.org/10.1007/BF00275919

    Google Scholar 

  2. Angelini, T.E., Hannezo, E., Trepat, X., Fredberg, J.J., Weitz, D.A.: Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104(16) (2010). doi:10.1103/PhysRevLett.104.168104

    Google Scholar 

  3. Barry, N.P., Bretscher, M.S.: Dictyostelium amoebae and neutrophils can swim. Proc. Natl. Acad. Sci. USA 107(25), 11376–11380 (2010). doi:10.1073/pnas.1006327107

    Article  ADS  Google Scholar 

  4. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton, (1983)

    Google Scholar 

  5. Berg, H.: E.Coli in Motion. Biological and Medical Physics Series. Springer, New York (2004). http://books.google.es/books?id=qyVoI1iUiBkC

  6. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia-Coli analyzed by 3-dimensional tracking. Nature 239(5374), 500–504 (1972). doi:10.1038/239500a0

    Article  ADS  Google Scholar 

  7. Berg, H., Purcell, E.: Physics of Chemoreception. Biophys. J. 20(2), 193–219 (1977)

    Article  ADS  Google Scholar 

  8. Boedeker, H.U., Beta, C., Frank, T.D., Bodenschatz, E.: Quantitative analysis of random ameboid motion. EPL 90(2) (2010). doi:10.1209/0295-5075/90/28005

    Google Scholar 

  9. Bosgraaf, L., Van Haastert, P.J.M.: The ordered extension of pseudopodia by amoeboid cells in the absence of external cues. PLOS ONE 4(4) (2009). doi:10.1371/journal.pone.0005253

    Google Scholar 

  10. Bray, D.: Cell Movements: From Molecules to Motility. Garland Pub., New York (2001). http://books.google.es/books?id=yd61229NHUgC

  11. Campos, D., Méndez, V.: Superdiffusive-like motion of colloidal nanorods. J. Chem. Phys. 130(13) (2009). doi:10.1063/1.3102096

    Google Scholar 

  12. Campos, D., Méndez, V., Llopis, I.: Persistent random motion Uncovering cell migration dynamics. J. Theor. Biol. 267(4), 526–534 (2010). doi:10.1016/j.jtbi.2010.09.022

    Article  Google Scholar 

  13. Carter, S.: Principles of cell motility – direction of cell movement and cancer invasion. Nature 208(5016), 1183–1187 (1965). doi:10.1038/2081183a0

    Article  ADS  Google Scholar 

  14. Childress, S.: Mechanics of Swimming and Flying. Cambridge Studies in Mathematical Biology. Cambridge University Press, New York (1981). http://books.google.es/books?id=YZ2zOzsvTLoC

  15. Cisneros, L.H., Kessler, J.O., Ganguly, S., Goldstein, R.E.: Dynamics of swimming bacteria: transition to directional order at high concentration. Phys. Rev. E 83(6, Part 1) (2011). doi:10.1103/PhysRevE.83.061907

    Google Scholar 

  16. Condat, C.A., Di Salvo, M.E.: Interplay between energetics and dynamics in bacterial motility. Phys. Rev. E 84(1, Part 1) (2011). doi:10.1103/PhysRevE.84.011911

    Google Scholar 

  17. Czirok, A., Schlett, K., Madarasz, E., Vicsek, T.: Exponential distribution of locomotion activity in cell cultures.  Phys. Rev. Lett. 81(14), 3038–3041 (1998).  doi:10.1103/PhysRevLett. 81.3038

    Article  ADS  Google Scholar 

  18. de Boisfleury-Chevance, A., Rapp, B., Gruler, H.: Locomotion of white blood-cells – a biophysical analysis. Blood Cells 15(2), 315–333 (1989)

    Google Scholar 

  19. Dickinson, R., Tranquillo, R.: Transport-equations and indexes for random and biased cell-migration based on single-cell properties. SIAM J. Appl. Math. 55(5), 1419–1454 (1995). doi:10.1137/S003613999223733X

    Article  MATH  MathSciNet  Google Scholar 

  20. Dieterich, P., Klages, R., Preuss, R., Schwab, A.: Anomalous dynamics of cell migration. Proc. Natl. Acad. Sci. USA 105(2), 459–463 (2008). doi:10.1073/pnas.0707603105. http://www.pnas.org/cgi/content/abstract/105/2/459

    Google Scholar 

  21. Discher, D., Janmey, P., Wang, Y.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). doi:10.1126/science.1116995

    Article  ADS  Google Scholar 

  22. Driscoll, M.K., McCann, C., Kopace, R., Homan, T., Fourkas, J.T., Parent, C., Losert, W.: Cell shape dynamics: from waves to migration. PLOS Comput. Biol. 8(3) (2012). doi:10.1371/journal.pcbi.1002392

    Google Scholar 

  23. Dunn, G., Brown, A.: A unified approach to analyzing cell motility. J. Cell Sci. 8, 81–102 (1987)

    Article  Google Scholar 

  24. Dusenbery, D.: Minimum size limit for useful locomotion by free-swimming microbes. Proc. Natl. Acad. Sci. USA 94(20), 10949–10954 (1997). doi:10.1073/pnas.94.20.10949

    Article  ADS  Google Scholar 

  25. Dusenbery, D.: Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria. J. Bacteriol. 180(22), 5978–5983 (1998)

    Google Scholar 

  26. Dusenbery, D.: Living at Micro Scale: The Unexpected Physics of Being Small. Harvard University Press, Cambridge (2009). http://books.google.es/books?id=QCrimQJu1RAC

  27. Fürth, R.: Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien. Z. Phys. 2, 244–256 (1920)

    Google Scholar 

  28. Gail, M., Boone, C.: Locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10(10), 980–993 (1970)

    Article  ADS  Google Scholar 

  29. Ginelli, F., Peruani, F., Baer, M., Chate, H.: Large-scale collective properties of self-propelled rods. Phys. Rev. Lett. 104(18) (2010). doi:10.1103/PhysRevLett.104.184502

    Google Scholar 

  30. Gruler, H., Nuccitelli, R.: Neural crest cell galvanotaxis – new data and a novel-approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil. Cytoskelet. 19(2), 121–133 (1991). doi:10.1002/cm.970190207

    Article  Google Scholar 

  31. Gruver, J.S., Potdar, A.A., Jeon, J., Sai, J., Anderson, B., Webb, D., Richmond, A., Quaranta, V., Cummings, P.T., Chung, C.Y.: Bimodal analysis reveals a general scaling law governing nondirected and chemotactic cell motility. Biophys. J. 99(2), 367–376 (2010). doi:10.1016/j.bpj.2010.03.073

    Article  ADS  Google Scholar 

  32. Hall, R.: Ameboid movement as a correlated walk. J. Math. Biol. 4(4), 327–335 (1977). doi:10.1007/BF00275081

    Article  MATH  Google Scholar 

  33. Hall, R., Peterson, S.: Trajectories of human granulocytes. Biophys. J. 25(2), 365–372 (1979)

    Article  ADS  Google Scholar 

  34. Hapca, S., Crawford, J.W., MacMillan, K., Wilson, M.J., Young, L.M.: Modelling nematode movement using time-fractional dynamics. J. Theor. Biol. 248(1), 212–224 (2007). doi:10.1016/j.jtbi.2007.05.002

    Article  MathSciNet  Google Scholar 

  35. Hastings, A.: Global stability of two species systems. J. Math. Biol. 5(4), 399–403 (1977). http://dx.doi.org/10.1007/BF00276109

    Google Scholar 

  36. Ionides, E.L., Fang, K.S., Isseroff, R.R., Oster, G.F.: Stochastic models for cell motion and taxis. J. Math. Biol. 48(1), 23–37 (2004). http://dx.doi.org/10.1007/s00285-003-0220-z

    Google Scholar 

  37. KarpBoss, L., Boss, E., c Jumars, P.: Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. In: Ansell, A.D., Gibson, R.N., Barnes, M. (eds.) Oceanography and Marine Biology, vol. 34, pp. 71–107. UCL Press, London (1996)

    Google Scholar 

  38. Keren, K., Pincus, Z., Allen, G.M., Barnhart, E.L., Marriott, G., Mogilner, A., Theriot, J.A.: Mechanism of shape determination in motile cells. Nature 453(7194), 475–480 (2008). doi:10.1038/nature06952

    Article  ADS  Google Scholar 

  39. Levandowsky, M., White, B.S., Schuster, F.L.: Random movements of soil amebas. Acta Protozool. 36(4), 237–248 (1997). http://www.nencki.gov.pl/abstr/abs_36/abs36-26.htm

    Google Scholar 

  40. Liang, L., Norrelykke, S.F., Cox, E.C.: Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS ONE 3(5), e2093 (2008)

    Article  ADS  Google Scholar 

  41. Liang, L., Cox, E., Flyvbjerg, H.: ‘Dicty dynamics’: dictyostelium motility as persistent random motion. Phys. Biol. 8(4) (2011). doi:10.1088/1478-3975/8/4/046006

    Google Scholar 

  42. Maeda, Y.T., Inose, J., Matsuo, M.Y., Iwaya, S., Sano, M.: Ordered patterns of cell shape and orientational correlation during spontaneous cell migration. PLOS ONE 3(11) (2008). doi:10.1371/journal.pone.0003734

    Google Scholar 

  43. Mayor, R., Carmona-Fontaine, C.: Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 20(6), 319–328 (2010). doi:10.1016/j.tcb.2010.03.005

    Article  Google Scholar 

  44. Mitchell, J.: The energetics and scaling of search strategies in bacteria. Am. Nat. 160(6), 727–740 (2002). doi:10.1086/343874

    Article  Google Scholar 

  45. Mogilner, A., Keren, K.: The shape of motile cells. Curr. Biol. 19(17), R762–R771 (2009). doi:10.1016/j.cub.2009.06.05

    Article  Google Scholar 

  46. Nossal, R., Weiss, G.: Descriptive theory of cell-migration on surfaces. J. Theor. Biol. 47(1), 103–113 (1974). doi:10.1016/0022-5193(74)90101-5

    Article  Google Scholar 

  47. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26(3), 263–298 (1988). http://dx.doi.org/10.1007/BF00277392

    Google Scholar 

  48. Patlak, C.: Random walk with persistence and external bias: a mathematical contribution to the study of orientation of organisms. University of Chicago, Committee on Mathematical Biology (1953). http://books.google.es/books?id=hWwvGwAACAAJ

  49. Peruani, F., Morelli, L.G.: Self-propelled particles with fluctuating speed and direction of motion in two dimensions. Phys. Rev. Lett. 99(1), 010602 (2007). doi:10.1103/PhysRevLett.99.010602. http://link.aps.org/abstract/PRL/v99/e010602

    Google Scholar 

  50. Peterson, S., Noble, P.: A Two-dimensional random-walk analysis of human granulocyte movement. Biophys. J. 12(8), 1048–1055 (1972)

    Article  Google Scholar 

  51. Potdar, A.A., Lu, J., Jeon, J., Weaver, A.M., Cummings, P.T.: Bimodal analysis of mammary epithelial cell migration in two dimensions. Ann. Biomed. Eng. 37(1), 230–245 (2009). doi:10.1007/s10439-008-9592-y

    Article  Google Scholar 

  52. Potdar, A.A., Jeon, J., Weaver, A.M., Quaranta, V., Cummings, P.T.: Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLOS ONE 5(3) (2010). doi:10.1371/journal.pone.0009636

    Google Scholar 

  53. Purcell, E.: Life at low reynolds-number. Am. J. Phys. 45(1), 3–11 (1977). doi:10.1119/ 1.10903

    Article  ADS  MathSciNet  Google Scholar 

  54. Rohatgi, V.: An Introduction to Probability Theory and Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics. Wiley, New York (1976). http://books.google.es/books?id=YyXvAAAAMAAJ

  55. Romanczuk, P., Schimansky-Geier, L.: Brownian motion with active fluctuations. Phys. Rev. Lett. 106(23) (2011). doi:10.1103/PhysRevLett.106.230601

    Google Scholar 

  56. Schienbein, M., Gruler, H.: Langevin equation, Fokker-planck equation and cell-migration. Bull. Math. Biol. 55(3), 585–608 (1993). doi:10.1007/BF02460652

    MATH  Google Scholar 

  57. Selmeczi, D., Mosler, S., Hagedorn, P.H., Larsen, N.B., Flyvbjerg, H.: Cell motility as persistent random motion: theories from experiments. Biophys. J. 89(2), 912–931 (2005). http://www.biophysj.org/cgi/content/abstract/89/2/912

    Google Scholar 

  58. Selmeczi, D., Li, L., Pedersen, L.I.I., Nrrelykke, S.F., Hagedorn, P.H., Mosler, S., Larsen, N.B., Cox, E.C., Flyvbjerg, H.: Cell motility as random motion: a review. Eur. Phys. J. Spec. Top. 157(1), 1–15 (2008). doi:10.1140/epjst/e2008-00626-x. http://dx.doi.org/10.1140/epjst/e2008-00626-x

    Google Scholar 

  59. Shenderov, A., Sheetz, M.: Inversely correlated cycles in speed and turning in an Ameba: an oscillatory model of cell locomotion. Biophys. J. 72(5), 2382–2389 (1997)

    Article  ADS  Google Scholar 

  60. Sibona, G.J.: Evolution of microorganism locomotion induced by starvation. Phys. Rev. E 76(1, Part 1) (2007). doi:10.1103/PhysRevE.76.011919

    Google Scholar 

  61. Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98(15) (2007). doi:10.1103/PhysRevLett.98.158102

    Google Scholar 

  62. Stokes, C., Lauffenburger, D., Williams, S.: Migration of individual microvessel endothelial-cells – stochastic-model and parameter measurement. J. Cell Sci. 99(Part 2), 419–430 (1991)

    Google Scholar 

  63. Stroock, D.: Stochastic-processes which arise from a model of motion of a bacterium. Zeitschrift fur wahrscheinlichkeitstheorie und verwandte gebiete 28(4), 305–315 (1974). doi:10.1007/BF00532948

    Article  MATH  Google Scholar 

  64. Takagi, H., Sato, M.J., Yanagida, T., Ueda, M.: Functional analysis of spontaneous cell movement under different physiological conditions. PLOS ONE 3(7) (2008). doi:10.1371/journal.pone.0002648

    Google Scholar 

  65. Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209(1099), 447–461 (1951). http://www.journals.royalsoc.ac.uk/link.asp?id=133254460915p156

  66. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36(5), 823–841 (1930)

    Article  ADS  MATH  Google Scholar 

  67. Upadhyaya, A., Rieu, J.P., Glazier, J.A., Sawada, Y.: Anomalous diffusion and non-gaussian velocity distribution of Hydra cells in cellular aggregates. Physica A 293(3–4), 549–558 (2001). http://dx.doi.org/10.1016/S0378-4371(01)00009-7

    Google Scholar 

  68. Van Haastert, P.J.M.: A model for a correlated random walk based on the ordered extension of pseudopodia. PLOS Comput. Biol. 6(8) (2010). doi:10.1371/journal.pcbi.1000874

    Google Scholar 

  69. Van Haastert, P.J.M.: Amoeboid cells use protrusions for walking, gliding and swimming. PLoS ONE 6(11) (2011). doi:10.1371/journal.pone.0027532

    Google Scholar 

  70. Vicsek, T., Zafeiris, A.: Collective Motion. Physics Reports 517(3–4), 71–140 (2012)

    Article  ADS  Google Scholar 

  71. Viswanathan, G.M., Raposo, E.P., Bartumeus, F., Catalan, J., da Luz, M.G.E.: Necessary criterion for distinguishing true superdiffusion from correlated random walk processes. Phys. Rev. E 72(1), 011111 (2005). http://dx.doi.org/10.1103/PhysRevE.72.011111

    Google Scholar 

  72. Yang, T.D., Park, J.S., Choi, Y., Choi, W., Ko, T.W., Lee, K.J.: Zigzag turning preference of freely crawling cells. PLOS ONE 6(6) (2011). doi:10.1371/journal.pone.0020255

    Google Scholar 

  73. Yoshiyama, K., Klausmeier, C.A.: Optimal cell size for resource uptake in fluids: a new facet of resource competition. Am. Nat. 171(1), 59–70 (2008). doi:10.1086/523950

    Article  Google Scholar 

  74. Young, K.D.: Bacterial morphology: why have different shapes? Curr. Opin. Microbiol. 10(6), 596–600 (2007). doi:10.1016/j.mib.2007.09.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Méndez, V., Campos, D., Bartumeus, F. (2014). Cell Motility. In: Stochastic Foundations in Movement Ecology. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39010-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39010-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39009-8

  • Online ISBN: 978-3-642-39010-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics