Skip to main content

Hypothesis Generation by Interactive Visual Exploration of Heterogeneous Medical Data

  • Conference paper
Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data (HCI-KDD 2013)

Abstract

High dimensional, heterogeneous datasets are challenging for domain experts to analyze. A very large number of dimensions often pose problems when visual and computational analysis tools are considered. Analysts tend to limit their attention to subsets of the data and lose potential insight in relation to the rest of the data. Generating new hypotheses is becoming problematic due to these limitations. In this paper, we discuss how interactive analysis methods can help analysts to cope with these challenges and aid them in building new hypotheses. Here, we report on the details of an analysis of data recorded in a comprehensive study of cognitive aging. We performed the analysis as a team of visualization researchers and domain experts. We discuss a number of lessons learned related to the usefulness of interactive methods in generating hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, T.M.: Machine learning. McGraw Hill series in computer science. McGraw-Hill (1997)

    Google Scholar 

  2. Chen, J., Chen, Z.: Extended bic for small-n-large-p sparse glm. Statistica Sinica 22(2), 555 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Kehrer, J., Ladstädter, F., Muigg, P., Doleisch, H., Steiner, A., Hauser, H.: Hypothesis generation in climate research with interactive visual data exploration. IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG) 14(6), 1579–1586 (2008)

    Article  Google Scholar 

  5. Turkay, C., Filzmoser, P., Hauser, H.: Brushing dimensions – a dual visual analysis model for high-dimensional data. IEEE Transactions on Visualization and Computer Graphics 17(12), 2591–2599 (2011)

    Article  Google Scholar 

  6. Andersson, M., Ystad, M., Lundervold, A., Lundervold, A.: Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus - a dichotic listening study. Behavioral and Brain Functions 5(41) (2009)

    Google Scholar 

  7. Ystad, M., Lundervold, A., Wehling, E., Espeseth, T., Rootwelt, H., Westlye, L., Andersson, M., Adolfsdottir, S., Geitung, J., Fjell, A., et al.: Hippocampal volumes are important predictors for memory function in elderly women. BMC Medical Imaging 9(1), 17 (2009)

    Article  Google Scholar 

  8. Ward, M.O.: Xmdvtool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the Conference on Visualization, VIS 1994, pp. 326–333. IEEE Computer Society Press (1994)

    Google Scholar 

  9. Yang, J., Hubball, D., Ward, M., Rundensteiner, E., Ribarsky, W.: Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. IEEE Transactions on Visualization and Computer Graphics 13(3), 494–507 (2007)

    Article  Google Scholar 

  10. Team, R.D.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2009), http://www.R-project.org

  11. Turkay, C., Parulek, J., Hauser, H.: Dual analysis of DNA microarrays. In: Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 2012, pp. 26:1–26:8 (2012)

    Google Scholar 

  12. Hodneland, E., Ystad, M., Haasz, J., Munthe-Kaas, A., Lundervold, A.: Automated approaches for analysis of multimodal mri acquisitions in a study of cognitive aging. Comput. Methods Prog. Biomed. 106(3), 328–341 (2012)

    Article  Google Scholar 

  13. Ystad, M., Eichele, T., Lundervold, A.J., Lundervold, A.: Subcortical functional connectivity and verbal episodic memory in healthy elderly – a resting state fmri study. NeuroImage 52(1), 379–388 (2010)

    Article  Google Scholar 

  14. Wechsler, D.: Wechsler abbreviated scale of intelligence. Psychological Corporation (1999)

    Google Scholar 

  15. Delis, D.C.: California verbal learning test. Psychological Corporation (2000)

    Google Scholar 

  16. Wechsler, D.: Wechsler adult iintelligence scale-iii (wais-iii). Psychological Corporation, San Antonio (1997)

    Google Scholar 

  17. Delis, D.C., Kaplan, E., Kramer, J.H.: Delis-Kaplan executive function system. Psychological Corporation (2001)

    Google Scholar 

  18. Reitan, R., Davison, L.: Clinical neuropsychology: current status and applications. Series in Clinical and Community Psychology. Winston (1974)

    Google Scholar 

  19. FreeSurfer (2012), http://surfer.nmr.mgh.harvard.edu

  20. Scheffer, J.: Dealing with missing data. Research Letters in the Information and Mathematical Sciences 3(1), 153–160 (2002)

    Google Scholar 

  21. Sullivan, E.V., Rosenbloom, M., Serventi, K.L., Pfefferbaum, A.: Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiology of Aging 25(2), 185–192 (2004)

    Article  Google Scholar 

  22. Walhovd, K.B., Fjell, A.M., Reinvang, I., Lundervold, A., Dale, A.M., Eilertsen, D.E., Quinn, B.T., Salat, D., Makris, N., Fischl, B.: Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging 26(9), 1261–1270 (2005)

    Article  Google Scholar 

  23. Hawkins, D.M., et al.: The problem of overfitting. Journal of Chemical Information and Computer Sciences 44(1), 1–12 (2004)

    Google Scholar 

  24. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd. (1995)

    Google Scholar 

  25. Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 43–50. IEEE (2010)

    Google Scholar 

  26. Johansson, J., Ljung, P., Jern, M., Cooper, M.: Revealing structure within clustered parallel coordinates displays. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 125–132 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turkay, C., Lundervold, A., Lundervold, A.J., Hauser, H. (2013). Hypothesis Generation by Interactive Visual Exploration of Heterogeneous Medical Data. In: Holzinger, A., Pasi, G. (eds) Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. HCI-KDD 2013. Lecture Notes in Computer Science, vol 7947. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39146-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39146-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39145-3

  • Online ISBN: 978-3-642-39146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics