Skip to main content

Ordinal Optimization-Based Methods for Efficient Variation-Aware Analog IC Sizing

  • Chapter
  • First Online:
Automated Design of Analog and High-frequency Circuits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 501))

  • 1350 Accesses

Abstract

Chapter 6 introduces ordinal optimization-based efficient robust design optimization methods. The method to cooperate ordinal optimization with hybrid methods, single and multi-objective constrained optimization methods is then discussed with practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Best candidate design represents the candidate with the highest estimated yield value based on the available samples.

References

  1. McConaghy T, Palmers P, Gao P, Steyaert M, Gielen G (2009a) Variation-aware analog structural synthesis: a computational intelligence approach. Springer Verlag, New York

    Google Scholar 

  2. Ho Y, Zhao Q, Jia Q (2007) Ordinal optimization: soft optimization for hard problems. Springer-Verlag, New York

    Google Scholar 

  3. Niederreiter H (1992) Quasi-monte carlo methods. Wiley, New York

    Google Scholar 

  4. Chen CH, Lin J, Yücesan E, Chick SE (2000a) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dyn Syst 10(3):251–270

    Google Scholar 

  5. Chen H, Chen C, Yucesan E (2000b) Computing efforts allocation for ordinal optimization and discrete event simulation. IEEE Trans Autom Control 45(5):960–964

    Google Scholar 

  6. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P. Report 826:1989–2057

    Google Scholar 

  7. Liu B, Fernández F, Gielen G (2010) An accurate and efficient yield optimization method for analog circuits based on computing budget allocation and memetic search technique. In: Proceedings of the conference on design, automation and test in Europe, pp 1106–1111

    Google Scholar 

  8. Lagarias J, Reeds J, Wright M, Wright P (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Google Scholar 

  9. Epitropakis M, Plagianakos V, Vrahatis M (2008) Balancing the exploration and exploitation capabilities of the differential evolution algorithm. In: Proceedings of IEEE world congress on computational intelligence, pp 2686–2693

    Google Scholar 

  10. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125

    Article  Google Scholar 

  11. Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  12. Liu B, Fernández F, Gielen G (2011a) Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans Comput Aided Des Integr Circuits Syst 30(6):793–805

    Google Scholar 

  13. Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm. In: Proceedings of 6th international mendel conference on, soft computing, pp 76–83

    Google Scholar 

  14. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338

    Article  MATH  Google Scholar 

  15. Graeb H (2007) Analog design centering and sizing. Springer Publishing Company, Incorporated, Dortrecht, Netherlands

    Google Scholar 

  16. Swidzinski J, Chang K (2000) Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations [microwave devices and ICs]. IEEE Trans Microw Theory Tech 48(12):2316–2324

    Article  Google Scholar 

  17. Mercado LL, Kuo SM, Lee TY, Lee R (2005) Analysis of RF MEMS switch packaging process for yield improvement. IEEE Trans Adv Packag 28(1):134–141

    Article  Google Scholar 

  18. Chan H, Englert P (2001) Accelerated stress testing handbook. IEEE Press, New York

    Google Scholar 

  19. Poojari C, Varghese B (2008) Genetic algorithm based technique for solving chance constrained problems. Eur J Oper Res 185(3):1128–1154

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu B (2002) Theory and practice of uncertain programming. PhysicaVerlag, Berlin

    Google Scholar 

  21. Liu B, Zhang Q, Fernández F, Gielen G (2013a) An efficient evolutionary algorithm for chance-constrained bi-objective stochastic optimization and its application to manufacturing engineering. IEEE Trans Evol Comput(To be published) doi:10.1109/TEVC.2013.2244898.

  22. Owen A (1998) Latin supercube sampling for very high-dimensional simulations. ACM Trans Model Comput Simul (TOMACS) 8(1):71–102

    Article  MathSciNet  MATH  Google Scholar 

  23. Singhee A, Rutenbar R (2009) Novel algorithms for fast statistical analysis of scaled circuits. Springer Verlag, New York

    Google Scholar 

  24. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  25. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  26. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, B., Gielen, G., Fernández, F.V. (2014). Ordinal Optimization-Based Methods for Efficient Variation-Aware Analog IC Sizing. In: Automated Design of Analog and High-frequency Circuits. Studies in Computational Intelligence, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39162-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39162-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39161-3

  • Online ISBN: 978-3-642-39162-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics