We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Prior Processes | SpringerLink
Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 1704 Accesses

Abstract

This chapter is devoted to introducing various prior processes, their formulation, properties, inter-relationships, and their relative strengths and weaknesses. The sequencing of presentation of these priors reflects mostly the order in which they were discovered and developed. The Dirichlet process and its immediate generalizations—Dirichlet Invariant and Mixtures of Dirichlet—are presented first. The neutral to the right processes and the processes with independent increments, which form the basis for many other processes, are discussed next. They are key in the development of processes that include beta, gamma and extended gamma processes, proposed primarily to address specific applications in the reliability theory, are presented next. Beta-Stacy process which extends the Dirichlet process is discussed thereafter. Following that, tailfree and Polya tree processes are presented which are especially convenient for estimating density functions, and to place greater weights, where it is deemed appropriate, by selecting suitable partitions in developing the prior. In order to extend the nonparametric Bayesian analysis to covariate data, numerous extensions are proposed. They have origin in the Ferguson-Sethuraman infinite sum representation in which the weights are constructed by a stick-breaking construction. They are collectively called here as Ferguson-Sethuraman processes and include dependent and spatial Dirichlet processes, Pitman-Yor process, Chinese restaurant and Indian buffet processes, etc. They all are included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Part of the material of this and the next two subsections is based on Ferguson (1974), Ferguson and Phadia (1979) and Ferguson’s unpublished notes which clarify and provide further insight into the description of the posterior processes neutral to the right. I am grateful to Tom Ferguson for passing on his notes to me which helped in developing these sections.

References

  • Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Annals of Statistics, 6, 701–726.

    MathSciNet  MATH  Google Scholar 

  • Ammann, L. P. (1984). Bayesian nonparametric inference for quantal response data. Annals of Statistics, 12, 636–645.

    MathSciNet  MATH  Google Scholar 

  • Ammann, L. P. (1985). Conditional Laplace transforms for Bayesian nonparametric inference in reliability theory. Stochastic Processes and Their Applications, 20, 197–212.

    MathSciNet  MATH  Google Scholar 

  • Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2, 1152–1174.

    MathSciNet  MATH  Google Scholar 

  • Basu, D., & Tiwari, R. C. (1982). A note on the Dirichlet process. In G. Kallianpur, P. R. Krishnaiah & J. K. Ghosh (Eds.), Statistics and probability: essays in honor of C. R. Rao (pp. 89–103).

    Google Scholar 

  • Blackwell, D. (1973). Discreteness of Ferguson selections. Annals of Statistics, 1, 356–358.

    MathSciNet  MATH  Google Scholar 

  • Blackwell, D., & MacQueen, J. B. (1973). Ferguson distributions via Polya urn schemes. Annals of Statistics, 1, 353–355.

    MathSciNet  MATH  Google Scholar 

  • Blum, J., & Susarla, V. (1977). On the posterior distribution of a Dirichlet process given randomly right censored observations. Stochastic Processes and Their Applications, 5, 207–211.

    MathSciNet  MATH  Google Scholar 

  • Bulla, P., Muliere, P., & Walker, S. (2007). Bayesian nonparametric estimation of a bivariate survival function. Statistica Sinica, 17, 427–444.

    MathSciNet  MATH  Google Scholar 

  • Bulla, P., Muliere, P., & Walker, S. (2009). A Bayesian nonparametric estimator of a multivariate survival function. Journal of Statistical Planning and Inference, 139, 3639–3648.

    MathSciNet  MATH  Google Scholar 

  • Christensen, R., Hanson, T., & Jara, A. (2008). Parametric nonparametric statistics: an introduction to mixtures of finite Polya trees. The American Statistician, 62, 296–306.

    MathSciNet  Google Scholar 

  • Chung, Y., & Dunson, D. B. (2011). The local Dirichlet process. Annals of the Institute of Statistical Mathematics, 63, 59–80.

    MathSciNet  Google Scholar 

  • Cifarelli, D. M., & Regazzini, E. (1979a). Considerazioni generali sull’impostazione bayesiana di problemi non parametrici, Part I. Rivista di matematica per le scienze economiche e sociali, 2, 39–52.

    MathSciNet  MATH  Google Scholar 

  • Cifarelli, D. M., & Regazzini, E. (1979b). Considerazioni generali sull’impostazione bayesiana di problemi non parametrici, Part II. Rivista di matematica per le scienze economiche e sociali, 2, 95–111.

    MathSciNet  MATH  Google Scholar 

  • Connor, R. J., & Mosimann, J. E. (1969). Concept of independence for proportions with a generalization of the Dirichlet distribution. Journal of the American Statistical Association, 64, 194–206.

    MathSciNet  MATH  Google Scholar 

  • Dabrowska, D. M. (1988). Kaplan-Meier estimate on the plane. Annals of Statistics, 16, 1475–1489.

    MathSciNet  MATH  Google Scholar 

  • Dalal, S. R. (1979a). Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions. Stochastic Processes and Their Applications, 9, 99–107.

    MathSciNet  MATH  Google Scholar 

  • Dalal, S. R., & Hall, G. J. (1980). On approximating parametric Bayes models by nonparametric Bayes models. Annals of Statistics, 8, 664–672.

    MathSciNet  MATH  Google Scholar 

  • Dalal, S. R., & Phadia, E. G. (1983). Nonparametric Bayes inference for concordance in bivariate distributions. Communications in Statistics. Theory and Methods, 12(8), 947–963.

    MathSciNet  MATH  Google Scholar 

  • Damien, P., Laud, P. W., & Smith, A. F. M. (1995). Approximate random variate generation form infinitely divisible distributions with applications to Bayesian inference. Journal of the Royal Statistical Society. Series B. Methodological, 57, 547–563.

    MathSciNet  MATH  Google Scholar 

  • Damien, P., Laud, P. W., & Smith, A. F. M. (1996). Implementation of Bayesian non-parametric inference based on beta processes. Scandinavian Journal of Statistics, 23, 27–36.

    MathSciNet  MATH  Google Scholar 

  • Dey, D., Müller, P., & Sinha, D. (Eds.) (1998). Lecture notes in statistics. Practical nonparametric and semiparametric Bayesian statistics. New York: Springer.

    MATH  Google Scholar 

  • Dey, J., Erickson, R. V., & Ramamoorthi, R. V. (2003). Some aspects of neutral to right priors. International Statistical Review, 71(2), 383–401.

    MATH  Google Scholar 

  • Doksum, K. A. (1974). Tailfree and neutral random probabilities and their posterior distributions. Annals of Probability, 2, 183–201.

    MathSciNet  MATH  Google Scholar 

  • Doss, H. (1984). Bayesian estimation in the symmetric location problem. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 68, 127–147.

    MathSciNet  MATH  Google Scholar 

  • Doss, H. (1985a). Bayesian nonparametric estimation of the median; part I: computation of the estimates. Annals of Statistics, 13, 1432–1444.

    MathSciNet  MATH  Google Scholar 

  • Doss, H. (1985b). Bayesian nonparametric estimation of the median; part II: asymptotic properties of the estimates. Annals of Statistics, 13, 1445–1464.

    MathSciNet  MATH  Google Scholar 

  • Dråghici, L., & Ramamoorthi, R. V. (2000). A note on the absolute continuity and singularity of Polya tree priors and posteriors. Scandinavian Journal of Statistics, 27, 299–303.

    Google Scholar 

  • Duan, J. A., Guindani, M., & Gelfand, A. E. (2007). Generalized spatial Dirichlet process model. Biometrika, 94, 809–825.

    MathSciNet  MATH  Google Scholar 

  • Dubins, L. E., & Freedman, D. A. (1966). Random distribution functions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 2: contributions to probability theory, part 1 (pp. 183–214).

    Google Scholar 

  • Dunson, D. B., & Park, J. H. (2008). Kernel stick-breaking processes. Biometrika, 95, 307–323.

    MathSciNet  MATH  Google Scholar 

  • Dykstra, R. L., & Laud, P. (1981). A Bayesian nonparametric approach to reliability. Annals of Statistics, 9, 356–367.

    MathSciNet  MATH  Google Scholar 

  • Engen, S. (1975). A note on the geometric series as a species frequency model. Biometrika, 62, 697–699.

    MathSciNet  MATH  Google Scholar 

  • Engen, S. (1978). Stochastic abundance models with emphasis on biological communities and species diversity. London: Chapman & Hall.

    MATH  Google Scholar 

  • Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268–277.

    MathSciNet  MATH  Google Scholar 

  • Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577–588.

    MathSciNet  MATH  Google Scholar 

  • Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoretical Population Biology, 3, 87–112.

    MathSciNet  MATH  Google Scholar 

  • Fabius, J. (1964). Asymptotic behavior of Bayes estimates. Annals of Mathematical Statistics, 35, 846–856.

    MathSciNet  MATH  Google Scholar 

  • Fabius, J. (1973). Neutrality and Dirichlet distributions. In Transactions of the 6th Prague conference on information theory, statistical decision functions and random processes (pp. 175–181).

    Google Scholar 

  • Feller, W. (1966). An introduction to probability theory and its applications (Vol. II). New York: Wiley

    MATH  Google Scholar 

  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230.

    MathSciNet  MATH  Google Scholar 

  • Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Annals of Statistics, 2, 615–629.

    MathSciNet  MATH  Google Scholar 

  • Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In H. Rizvi & J. S. Rustagi (Eds.), Recent advances in statistics (pp. 287–302). New York: Academic Press.

    Google Scholar 

  • Ferguson, T. S., & Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Annals of Statistics, 7, 163–186.

    MathSciNet  MATH  Google Scholar 

  • Freedman, D. A. (1963). On the asymptotic behavior of Bayes estimates in the discrete case. Annals of Mathematical Statistics, 34, 1386–1403.

    MathSciNet  Google Scholar 

  • Gelfand, A. E., Kottas, A., & MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100, 1021–1035.

    MathSciNet  MATH  Google Scholar 

  • Ghahramani, Z., Griffiths, T. L., & Sollich, P. (2007). Bayesian nonparametric latent feature models (with discussion and rejoinder). In J. M. Bernardo et al. (Eds.), Bayesian statistics (Vol. 8). Oxford: Oxford University Press.

    Google Scholar 

  • Ghosh, J. K., & Ramamoorthi, R. V. (2003). Springer series in statistics. Bayesian nonparametric. New York: Springer.

    Google Scholar 

  • Ghosh, J. K., Hjort, N. L., Messan, C., & Ramamoorthi, R. V. (2006). Bayesian bivariate survival estimation. Journal of Statistical Planning and Inference, 136, 2297–2308.

    MathSciNet  MATH  Google Scholar 

  • Griffin, J. E., & Steel, M. F. J. (2006). Order-based dependent Dirichlet processes. Journal of the American Statistical Association, 101, 179–194.

    MathSciNet  MATH  Google Scholar 

  • Griffiths, R. C. (1980). Unpublished notes.

    Google Scholar 

  • Griffiths, T. L., & Ghahramani, Z. (2006). Infinite latent feature models and the Indian buffet process. In Advances in neural information processing systems (Vol. 18). Cambridge: MIT.

    Google Scholar 

  • Griffiths, T. L., & Ghahramani, Z. (2011). The Indian buffet process: an introduction and review. Journal of Machine Learning Research, 12, 1185–1224.

    MathSciNet  Google Scholar 

  • Hannum, R. C., Hollander, M., & Langberg, N. A. (1981). Distributional results for random functionals of a Dirichlet process. Annals of Probability, 9, 665–670.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 1548–1565.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E. (2007). Polya trees and their use in reliability and survival analysis. In Encyclopedia of statistics in quality and reliability (pp. 1385–1390). New York: Wiley.

    Google Scholar 

  • Hanson, T. E., & Johnson, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 1020–1033.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E., Branscum, A., & Gardner, I. (2008). Multivariate mixtures of Polya trees for modelling ROC data. Statistical Modelling, 8, 81–96.

    MathSciNet  Google Scholar 

  • Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3), 1259–1294.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim, J. L., Chen, M., & Sinha, D. (2001). Bayesian survival analysis. New York: Springer.

    MATH  Google Scholar 

  • Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96, 161–173.

    MathSciNet  MATH  Google Scholar 

  • Ishwaran, H., & Zarepour, M. (2000). Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika, 87, 371–390.

    MathSciNet  MATH  Google Scholar 

  • Ishwaran, H., & Zarepour, M. (2002). Exact and approximate sum representation for the Dirichlet process. Canadian Journal of Statistics, 30(2), 269–283.

    MathSciNet  MATH  Google Scholar 

  • James, L. F. (2006). Poisson calculus for spatial neutral to the right processes. Annals of Statistics, 34, 416–440.

    MathSciNet  MATH  Google Scholar 

  • Johnson, N. L., Kotz, S., & Balkrishnan, N. (1997). Multivariate Ewens distribution. In Discrete multivariate distributions (pp. 232–246). New York: Wiley.

    Google Scholar 

  • Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival data. Journal of the Royal Statistical Society. Series B. Methodological, 40, 214–221.

    MathSciNet  MATH  Google Scholar 

  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    MathSciNet  MATH  Google Scholar 

  • Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Annals of Statistics, 27, 562–588.

    MathSciNet  MATH  Google Scholar 

  • Kingman, J. F. C. (1967). Completely random measures. Pacific Journal of Mathematics, 21, 59–78.

    MathSciNet  MATH  Google Scholar 

  • Kingman, J. F. C. (1975). Random discrete distributions. Journal of the Royal Statistical Society. Series B. Methodological, 75, 1–22.

    MathSciNet  Google Scholar 

  • Kingman, J. F. C. (1993). Poisson processes. Oxford: Clarendon.

    MATH  Google Scholar 

  • Korwar, R. M., & Hollander, M. (1973). Contributions to the theory of Dirichlet processes. Annals of Probability, 1, 705–711.

    MathSciNet  MATH  Google Scholar 

  • Kraft, C. H. (1964). A class of distribution function processes which have derivatives. Journal of Applied Probability, 1, 385–388.

    MathSciNet  MATH  Google Scholar 

  • Kraft, C. H., & van Eeden, C. (1964). Bayesian bioassay. Annals of Mathematical Statistics, 35, 886–890.

    MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. Annals of Statistics, 20, 1222–1235.

    MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1994). More aspects of Polya trees for statistical modelling. Annals of Statistics, 22, 1161–1176.

    MathSciNet  MATH  Google Scholar 

  • Lijoi, A., & Prünster, I. (2010). Models beyond the Dirichlet process. In N. L. Hjort et al. (Eds.), Cambridge series in statistical and probabilistic mathematics. Bayesian nonparametrics (pp. 80–136).

    Google Scholar 

  • Lo, A. Y. (1981). Bayesian nonparametric statistical inference for shock models and wear processes. Scandinavian Journal of Statistics, 8, 237–242.

    MATH  Google Scholar 

  • Lo, A. Y. (1982). Bayesian nonparametric statistical inference for Poisson point processes. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59, 55–66.

    MATH  Google Scholar 

  • Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates; I. Density estimates. Annals of Statistics, 12, 351–357.

    MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1986). Bayesian statistical inference for sampling a finite population. Annals of Statistics, 14, 1226–1233.

    MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1987). A large sample study of the Bayesian bootstrap. Annals of Statistics, 15(1), 360–375.

    MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1991). A characterization of the Dirichlet process. Statistics & Probability Letters, 12, 185–187.

    MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1993a). A Bayesian bootstrap for censored data. Annals of Statistics, 21, 100–123.

    MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1993b). A Bayesian method for weighted sampling. Annals of Statistics, 21, 2138–2148.

    MathSciNet  MATH  Google Scholar 

  • MacEachern, S. N. (1998). Computational methods for mixture of Dirichlet process models. In D. Dey, P. Müller, & D. Sinha (Eds.), Practical nonparametric and semiparametric Bayesian statistics (pp. 23–44).

    Google Scholar 

  • MacEachern, S. N. (1999). Dependent nonparametric processes. In ASA proceedings of the section on Bayesian statistical science. Alexandria: Am. Statist. Assoc.

    Google Scholar 

  • MacEachern, S. N. (2000). Dependent Dirichlet processes. Unpublished manuscript, The Ohio State University, Department of Statistics.

    Google Scholar 

  • Mauldin, R. D., Sudderth, W. D., & Williams, S. C. (1992). Polya trees and random distributions. Annals of Statistics, 20, 1203–1221.

    MathSciNet  MATH  Google Scholar 

  • McCloskey, J. W. (1965). A model for the distribution of individuals by species in an environment. Unpublished Ph.D. thesis, Michigan State University.

    Google Scholar 

  • Muliere, P., & Walker, S. (1997). A Bayesian non-parametric approach to survival analysis using Polya trees. Scandinavian Journal of Statistics, 24, 331–340.

    MathSciNet  MATH  Google Scholar 

  • Ongaro, A., & Cattaneo, C. (2004). Discrete random probability measures: a general framework for nonparametric Bayesian inference. Statistics & Probability Letters, 67, 33–45.

    MathSciNet  MATH  Google Scholar 

  • Patil, G. P., & Taillie, C. (1977). Diversity as a concept and its implications for random communities. Bulletin of the International Statistical Institute, 47, 497–515.

    MathSciNet  MATH  Google Scholar 

  • Perman, M., Pitman, J., & Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields, 92, 21–39.

    MathSciNet  MATH  Google Scholar 

  • Petrone, S. (1999). Random Bernstein polynomials. Scandinavian Journal of Statistics, 26, 373–393.

    MathSciNet  MATH  Google Scholar 

  • Phadia, E. G. (2007). On bivariate tailfree processes. In Proceedings of the 56th session of the International Statistical Institute, Lisbon, Portugal. Electronic version.

    Google Scholar 

  • Phadia, E. G., & Susarla, V. (1983). Nonparametric Bayesian estimation of a survival curve with dependent censoring mechanism. Annals of the Institute of Statistical Mathematics, 35, 389–400.

    MathSciNet  MATH  Google Scholar 

  • Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probability Theory and Related Fields, 102, 145–158.

    MathSciNet  MATH  Google Scholar 

  • Pitman, J. (1996a). Random discrete distributions invariant under size-biased permutation. Advances in Applied Probability, 28, 525–539.

    MathSciNet  MATH  Google Scholar 

  • Pitman, J. (1996b). Some developments of the Blackwell-MacQueen urn scheme. In T. S. Ferguson, L. S. Shapley & J. B. MacQueen (Eds.), Statistics, probability and game theory. Papers in honor or David Blackwell (pp. 245–267). Hayward: IMS.

    Google Scholar 

  • Pitman, J., & Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Annals of Probability, 25, 855–900.

    MathSciNet  MATH  Google Scholar 

  • Pruiit, R. C. (1988). An inconsistent Bayes estimate in bivariate survival curve analysis. Preprint, University of Minnesota.

    Google Scholar 

  • Reich, B. J., & Fuentes, M. (2007). A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Annals of Applied Statistics, 1, 240–264.

    MathSciNet  Google Scholar 

  • Rodriguez, A., Dunson, D. B., & Gelfand, A. E. (2010). Latent stick-breaking processes. Journal of the American Statistical Association, 105, 647–659.

    MathSciNet  Google Scholar 

  • Salinas-Torres, V. H., Pereira, C. A. B., & Tiwari, R. C. (2002). Bayesian nonparametric estimation in a series system or a competing-risks model. Journal of Nonparametric Statistics, 14, 449–458.

    MathSciNet  MATH  Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of the Dirichlet process prior. Statistica Sinica, 2, 639–650.

    MathSciNet  Google Scholar 

  • Sethuraman, J., & Tiwari, R. C. (1982). Convergence of Dirichlet measures and the interpretation of their parameter. In S. Gupta & J. Berger (Eds.), Statistical decision theory and related topics III (Vol. 1, pp. 305–315).

    Google Scholar 

  • Sinha, D. (1997). Time-discrete beta-process model for interval-censored survival data. Canadian Journal of Statistics, 25, 445–456.

    MATH  Google Scholar 

  • Susarla, V., & Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the American Statistical Association, 71, 897–902.

    MathSciNet  MATH  Google Scholar 

  • Susarla, V., & Van Ryzin, J. (1978b). Large sample theory for a Bayesian nonparametric survival curve estimator based on censored samples. Annals of Statistics, 6, 755–768.

    MathSciNet  MATH  Google Scholar 

  • Susarla, V., & Van Ryzin, J. (1980). Addendum to “Large sample theory for a Bayesian nonparametric survival curve estimator based on censored samples”. Annals of Statistics, 8, 693.

    MathSciNet  MATH  Google Scholar 

  • Teh, Y. W., & Gorur, D. (2010). Indian buffet processes with power-law behavior. In Advances in neural information processing systems (Vol. 22).

    Google Scholar 

  • Teh, Y. W., & Jordan, M. I. (2010). Hierarchical Bayesian nonparametric models with applications. In N. L. Hjort et al. (Eds.), Cambridge series in statistical and probabilistic mathematics. Bayesian nonparametrics.

    Google Scholar 

  • Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2004). Hierarchical Dirichlet processes. In Advances in neural information processing systems (Vol. 17). Cambridge: MIT Press.

    Google Scholar 

  • Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.

    MathSciNet  MATH  Google Scholar 

  • Teh, Y. W., Gorur, D., & Ghahramani, Z. (2007). Stick-breaking construction for the Indian buffet process. In M. Meila & X. Shen (Eds.), Proceedings of the international conference on artificial intelligence and statistics (Vol. 11, pp. 556–563). Brookline: Microtome Publishing.

    Google Scholar 

  • Thibaux, R., & Jordan, M. I. (2007). Hierarchical beta processes and the Indian buffet process. In M. Meila & X. Shen (Eds.), Proceedings of the international conference on artificial intelligence and statistics (Vol. 11, pp. 564–571). Brookline: Microtome Publishing.

    Google Scholar 

  • Tiwari, R. C. (1981). A mathematical study of the Dirichlet process. Ph.D. dissertation, Florida State University, Department of Statistics.

    Google Scholar 

  • Tiwari, R. C. (1988). Convergence of the Dirichlet invariant measures and the limits of Bayes estimates. Communications in Statistics. Theory and Methods, 17(2), 375–393.

    MathSciNet  MATH  Google Scholar 

  • Tsai, W. Y. (1986). Estimation of survival curves from dependent censorship models via a generalized self-consistent property with nonparametric Bayesian estimation application. Annals of Statistics, 14, 238–249.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Damien, P. (1998). A full Bayesian nonparametric analysis involving a neutral to the right process. Scandinavian Journal of Statistics, 25, 669–680.

    MathSciNet  Google Scholar 

  • Walker, S. G., & Mallick, B. K. (1997b). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 59, 845–860.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Mallick, B. K. (1999). Semiparametric accelerated life time models. Biometrics, 55, 477–483.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Muliere, P. (1997a). Beta-Stacy processes and a generalization of the Polya-urn scheme. Annals of Statistics, 25(4), 1762–1780.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Muliere, P. (1997b). A characterization of Polya tree distributions. Statistics & Probability Letters, 31, 163–168.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Muliere, P. (1999). A characterization of a neutral to the right prior via an extension of Johnson’s sufficientness postulate. Annals of Statistics, 27(2), 589–599.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Muliere, P. (2003). A bivariate Dirichlet process. Statistics & Probability Letters, 64, 1–7.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G., Damien, P., Laud, P., & Smith, A. F. M. (1999). Bayesian nonparametric inference for random distributions and related functions. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 61, 485–527.

    MathSciNet  MATH  Google Scholar 

  • West, M. (1992). Modelling with mixtures (with discussion and rejoinder). In J. M. Bernardo et al. (Eds.), Bayesian statistics (Vol. 4). Oxford: Oxford University Press.

    Google Scholar 

  • Wild, C. J., & Kalbfleisch, J. D. (1981). A note on a paper by Ferguson and Phadia. Annals of Statistics, 9, 1061–1065.

    MathSciNet  MATH  Google Scholar 

  • Wolpart, R. L., & Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika, 85, 251–267.

    MathSciNet  Google Scholar 

  • Yamato, H. (1977a). Relations between limiting Bayes estimates and the U-statistics for estimable parameters of degree 2 and 3. Communications in Statistics. Theory and Methods, 6, 55–66.

    MathSciNet  Google Scholar 

  • Yamato, H. (1977b). Relations between limiting Bayes estimates and the U-statistics for estimable parameters. Journal of the Japan Statistical Society, 7, 57–66.

    MathSciNet  Google Scholar 

  • Yamato, H. (1984). Characteristic functions of means of distributions chosen from a Dirichlet process. Annals of Probability, 12, 262–267.

    MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1986). Bayes estimates of estimable parameters with a Dirichlet invariant process. Communications in Statistics. Theory and Methods, 15(8), 2383–2390.

    MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1987). Nonparametric Bayes estimates of estimable parameters with a Dirichlet invariant process and invariant U-statistics. Communications in Statistics. Theory and Methods, 16(2), 525–543.

    MathSciNet  MATH  Google Scholar 

  • Yang, M., Hanson, T., & Christensen, R. (2008). Nonparametric Bayesian estimation of a bivariate density with interval censored data. Computational Statistics & Data Analysis, 52(12), 5202–5214.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phadia, E.G. (2013). Prior Processes. In: Prior Processes and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39280-1_1

Download citation

Publish with us

Policies and ethics