Skip to main content

3 Systems Biology Approaches to Understanding and Predicting Fungal Virulence

  • Chapter
  • First Online:
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

  • 2238 Accesses

Abstract

The identification of fungal virulence factors and novel targets for therapeutic intervention are hindered by the rapid adaptability of pathogenic fungi to their host. One of the major goals of systems biology (SysBio) is to investigate the molecular wiring and dynamics in biological networks, as well as to identify and predict emerging properties of systems. Recent advances in SysBio approaches have paved the way for deciphering host–pathogen interaction complexity and the identification of microbial virulence factors. In this chapter, we discuss SysBio-based methods and milestones in the investigation of fungal virulence, emphasizing computational and modeling-based approaches in the Candida and Saccharomyces genera. We describe the applicability of each method to specific experimental questions using numerous case examples, and critically discuss current gaps and pitfalls in the analysis of SysBio data sets.

Lanay Tierney and Katarzyna Tyc contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann J, Koch I (2011) Quantitative analysis. In: Koch I, Reisig W, Schreiber F (eds) Modeling in systems biology: the Petri Net approach. Computational biology, vol 16. Springer, Berlin, pp 153–178

    Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    PubMed  CAS  Google Scholar 

  • Albino D, Scaruffi P, Moretti S, Coco S, Truini M, Di Cristofano C et al (2008) Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer 113:1412–1422

    PubMed  CAS  Google Scholar 

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:1633–1648

    PubMed  CAS  Google Scholar 

  • Ay A, Arnosti DN (2011) Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 46:137–151

    PubMed  Google Scholar 

  • Baker M (2012) Databases fight funding cuts. Nature 489:19

    PubMed  CAS  Google Scholar 

  • Baker SM, Schallau K, Junker BH (2010) Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. J Integr Bioinform 7:3

    CAS  Google Scholar 

  • Bauer AL, Beauchemin CA, Perelson AS (2009) Agent-based modeling of host-pathogen systems: the successes and challenges. Inform Sci 179:1379–1389

    Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738

    PubMed  CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    PubMed  CAS  Google Scholar 

  • Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49

    PubMed  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    PubMed  CAS  Google Scholar 

  • Braun BR, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A et al (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1:36–57

    PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    PubMed  CAS  Google Scholar 

  • Brenner S, Noble D, Sejnowski T, Fields RD, Laughlin S, Berridge M, Segel L, Prank K, Dolmetsch RE (2001) Understanding complex systems: top-down, bottom-up or middle-out? In: Bock G, Goode J (eds) Complexity in biological information processing, vol 239, Novartis foundation symposium. Wiley, Chichester, pp 150–159

    Google Scholar 

  • Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15:45–50

    PubMed  CAS  Google Scholar 

  • Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G et al (2010) Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res 20:1451–1458

    PubMed  CAS  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    PubMed  CAS  Google Scholar 

  • Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841–3862

    PubMed  CAS  Google Scholar 

  • Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88

    PubMed  CAS  Google Scholar 

  • Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4:210

    PubMed  Google Scholar 

  • Cuomo CA, Birren BW (2010) The fungal genome initiative and lessons learned from genome sequencing. Methods Enzymol 470:833–855

    PubMed  CAS  Google Scholar 

  • de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254

    PubMed  Google Scholar 

  • Dembele D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics 19:973–980

    PubMed  CAS  Google Scholar 

  • Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L (2006) From in vivo to in silico biology and back. Nature 443:527–533

    PubMed  Google Scholar 

  • Dujon B (1993) Mapping and sequencing the nuclear genome of the yeast Saccharomyces cerevisiae: strategies and results of the European enterprise. Cold Spring Harb Symp Quant Biol 58:357–366

    PubMed  CAS  Google Scholar 

  • Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6:2147–2156

    PubMed  CAS  Google Scholar 

  • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528–5533

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    PubMed  CAS  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    PubMed  CAS  Google Scholar 

  • Fernandez-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C (2004) Contribution of the antibodies response induced by a low virulent Candida albicans strain in protection against systemic candidiasis. Proteomics 4:1204–1215

    PubMed  CAS  Google Scholar 

  • Fernandez-Arenas E, Cabezon V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R et al (2007) Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6:460–478

    PubMed  CAS  Google Scholar 

  • Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P et al (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547

    PubMed  CAS  Google Scholar 

  • Flöttmann M, Scharp T, Klipp E (2012) A stochastic model of epigenetic dynamics in somatic cell reprogramming. Front Physiol 3:216

    PubMed  Google Scholar 

  • Folcik VA, Broderick G, Mohan S, Block B, Ekbote C, Doolittle J et al (2011) Using an agent-based model to analyze the dynamic communication network of the immune response. Theor Biol Med Model 8:1

    PubMed  Google Scholar 

  • Forche A, Magee PT, Selmecki A, Berman J, May G (2009) Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182:799–811

    PubMed  CAS  Google Scholar 

  • Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    PubMed  CAS  Google Scholar 

  • Fozard JA, Lees M, King JR, Logan BS (2012) Inhibition of quorum sensing in a computational biofilm simulation. Bio Syst 109:105–114

    CAS  Google Scholar 

  • Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543

    PubMed  CAS  Google Scholar 

  • Frey HC, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22:553–578, Risk analysis: an official publication of the Society for Risk Analysis

    PubMed  Google Scholar 

  • Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution; Int J Org Evol 58:245–260

    Google Scholar 

  • Fu L, Medico E (2007) FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8:3

    PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    PubMed  CAS  Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Taylor & Francis, Boca Raton

    Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    PubMed  CAS  Google Scholar 

  • Garg A, Mohanram K, Di Cara A, De Micheli G, Xenarios I (2009) Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25:i101–i109

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63:6212–6220

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    PubMed  CAS  Google Scholar 

  • Giacomantonio CE, Goodhill GJ (2010) A Boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput Biol 6

    Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    PubMed  CAS  Google Scholar 

  • Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39:103–129

    PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H et al (1996) Life with 6000 genes. Science 274(546):63–67

    Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    PubMed  CAS  Google Scholar 

  • Gorochowski TE, Matyjaszkiewicz A, Todd T, Oak N, Kowalska K, Reid S et al (2012) BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS One 7:e42790

    PubMed  CAS  Google Scholar 

  • Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM et al (2011) In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7:e1002145

    PubMed  CAS  Google Scholar 

  • Hall BG (2004) Predicting the evolution of antibiotic resistance genes. Nat Rev Microbiol 2:430–435

    PubMed  CAS  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Google Scholar 

  • Haynes BC, Skowyra ML, Spencer SJ, Gish SR, Williams M, Held EP et al (2011) Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog 7:e1002411

    PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem/FEBS 42:89–95

    CAS  Google Scholar 

  • Herman PK (2002) Stationary phase in yeast. Curr Opin Microbiol 5:602–607

    PubMed  CAS  Google Scholar 

  • Hickman GJ, Hodgman TC (2009) Inference of gene regulatory networks using Boolean-network inference methods. J Bioinform Comput Biol 7:1013–1029

    PubMed  CAS  Google Scholar 

  • Himmelreich U, Malik R, Kuhn T, Daniel HM, Somorjai RL, Dolenko B et al (2009) Rapid etiological classification of meningitis by NMR spectroscopy based on metabolite profiles and host response. PLoS One 4:e5328

    PubMed  Google Scholar 

  • Hnisz D, Tscherner M, Kuchler K (2011) Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious. Epigenomics 3:129–132

    PubMed  CAS  Google Scholar 

  • Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schock U et al (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8:e1003118

    PubMed  CAS  Google Scholar 

  • Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5:e1000783

    PubMed  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N et al (2006) COPASI–a complex pathway simulator. Bioinformatics 22:3067–3074

    PubMed  CAS  Google Scholar 

  • Hope WW, Warn PA, Sharp A, Howard S, Kasai M, Louie A et al (2006) Derivation of an in vivo drug exposure breakpoint for flucytosine against Candida albicans and Impact of the MIC, growth rate, and resistance genotype on the antifungal effect. Antimicrob Agents Chemother 50:3680–3688

    PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    PubMed  CAS  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Med Mycol 46:1–15

    PubMed  CAS  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    PubMed  CAS  Google Scholar 

  • Hummert S, Hummert C, Schroter A, Hube B, Schuster S (2010) Game theoretical modelling of survival strategies of Candida albicans inside macrophages. J Theor Biol 264:312–318

    PubMed  CAS  Google Scholar 

  • Inada M, Pleiss JA (2010) Genome-wide approaches to monitor pre-mRNA splicing. Methods Enzymol 470:51–75

    PubMed  CAS  Google Scholar 

  • Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D et al (2009) Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19:2231–2244

    PubMed  CAS  Google Scholar 

  • Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7:813–819

    PubMed  CAS  Google Scholar 

  • Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197

    PubMed  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB et al (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    PubMed  CAS  Google Scholar 

  • Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J et al (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat Methods 5:239–241

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  • Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:770–780

    PubMed  CAS  Google Scholar 

  • Kaufman A, Kupiec M, Ruppin E (2004) Multi-knockout genetic network analysis: the Rad6 example. Proc IEEE Comput Syst Bioinform Conf 2004:332–340

    Google Scholar 

  • Kerr G, Ruskin HJ, Crane M, Doolan P (2008) Techniques for clustering gene expression data. Comput Biol Med 38:283–293

    PubMed  CAS  Google Scholar 

  • Kersey P, Apweiler R (2006) Linking publication, gene and protein data. Nat Cell Biol 8:1183–1189

    PubMed  CAS  Google Scholar 

  • Kirschner MW (2005) The meaning of systems biology. Cell 121:503–504

    PubMed  CAS  Google Scholar 

  • Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    PubMed  CAS  Google Scholar 

  • Klipp E, Wierling WLC, Kowald A, Lehrach H, Herwig R (2009) Systems biology: a textbook. Wiley-Blackwell, Weinheim

    Google Scholar 

  • Kniemeyer O, Schmidt AD, Vodisch M, Wartenberg D, Brakhage AA (2011) Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Int J Med Microbiol 301:368–377

    PubMed  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    PubMed  CAS  Google Scholar 

  • Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88:25–33

    PubMed  CAS  Google Scholar 

  • Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of SBML models with semanticSBML. Bioinformatics 26:421–422

    PubMed  CAS  Google Scholar 

  • Kuhn C, Wierling C, Kuhn A, Klipp E, Panopoulou G, Lehrach H et al (2009) Monte Carlo analysis of an ODE model of the sea urchin endomesoderm network. BMC Syst Biol 3:83

    PubMed  Google Scholar 

  • Kusch H, Engelmann S, Bode R, Albrecht D, Morschhauser J, Hecker M (2008) A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 298:291–318

    PubMed  CAS  Google Scholar 

  • Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY et al (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062

    PubMed  CAS  Google Scholar 

  • Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23:1509–1515

    PubMed  Google Scholar 

  • Leach MD, Tyc KM, Brown AJ, Klipp E (2012) Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS One 7:e32467

    PubMed  CAS  Google Scholar 

  • Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F (2008) Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9:R164

    PubMed  Google Scholar 

  • Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:4781–4786

    PubMed  CAS  Google Scholar 

  • Li Z, Vizeacoumar FJ, Bahr S, Li J, Warringer J, Vizeacoumar FS et al (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29:361–367

    PubMed  CAS  Google Scholar 

  • Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific symposium on biocomputing. Pacific symposium on biocomputing, pp 18–29

    Google Scholar 

  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM (2008) Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135:174–188

    PubMed  CAS  Google Scholar 

  • Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D et al (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324

    PubMed  Google Scholar 

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087

    PubMed  CAS  Google Scholar 

  • Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1:24–45

    CAS  Google Scholar 

  • Marcet-Houben M, Gabaldon T (2009) The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLoS One 4:e4357

    PubMed  Google Scholar 

  • Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006) Reverse engineering cellular networks. Nat Protoc 1:662–671

    PubMed  CAS  Google Scholar 

  • Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY et al (2009) MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 9:4627–4631

    PubMed  CAS  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    PubMed  Google Scholar 

  • Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 20:1679–1684

    PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    PubMed  CAS  Google Scholar 

  • Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proc Natl Acad Sci USA 108(Suppl 2):10839–10846

    PubMed  CAS  Google Scholar 

  • Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    PubMed  CAS  Google Scholar 

  • Moretti S, Fioravante P, Bonassi S (2007) The class of microarray games and the relevance index for genes. TOP 15:256–280

    Google Scholar 

  • Moretti S, van Leeuwen D, Gmuender H, Bonassi S, van Delft J, Kleinjans J et al (2008) Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution. BMC Bioinformatics 9:361

    PubMed  Google Scholar 

  • Mura I, Csikasz-Nagy A (2008) Stochastic Petri Net extension of a yeast cell cycle model. J Theor Biol 254:850–860

    PubMed  Google Scholar 

  • Mustacchi R, Hohmann S, Nielsen J (2006) Yeast systems biology to unravel the network of life. Yeast 23:227–238

    PubMed  CAS  Google Scholar 

  • Netotea S, Bertani I, Steindler L, Kerenyi A, Venturi V, Pongor S (2009) A simple model for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacterial swarming as the movement of an “activation zone”. Biol Direct 4:6

    PubMed  Google Scholar 

  • Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035

    PubMed  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    PubMed  CAS  Google Scholar 

  • Niittylae T, Chaudhuri B, Sauer U, Frommer WB (2009) Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics. Methods Mol Biol 553:355–372

    PubMed  CAS  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    PubMed  CAS  Google Scholar 

  • Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598

    PubMed  CAS  Google Scholar 

  • Novak B, Tyson J (2002) Cell cycle controls. Springer, Berlin, pp 261–284

    Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • O’Malley MA, Dupre J (2005) Fundamental issues in systems biology. Bioessays 27:1270–1276, BioEssays: news and reviews in molecular, cellular and developmental biology

    PubMed  Google Scholar 

  • Oosthuizen JL, Gomez P, Ruan J, Hackett TL, Moore MM, Knight DA et al (2011) Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus. PLoS One 6:e20527

    PubMed  CAS  Google Scholar 

  • Opel M, Lando D, Bonilla C, Trewick SC, Boukaba A, Walfridsson J et al (2007) Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1. PLoS One 2:e386

    PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    PubMed  CAS  Google Scholar 

  • Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220

    PubMed  CAS  Google Scholar 

  • Pappalardo F, Martinez Forero I, Pennisi M, Palazon A, Melero I, Motta S (2011) SimB16: modeling induced immune system response against B16-melanoma. PLoS One 6:e26523

    PubMed  CAS  Google Scholar 

  • Peng M, Taouatas N, Cappadona S, van Breukelen B, Mohammed S, Scholten A et al (2012) Protease bias in absolute protein quantitation. Nat Methods 9:524–525

    PubMed  CAS  Google Scholar 

  • Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26:584–590

    PubMed  CAS  Google Scholar 

  • Pfeiffer T, Schuster S (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem Sci 30:20–25

    PubMed  CAS  Google Scholar 

  • Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    PubMed  CAS  Google Scholar 

  • Pogson M, Smallwood R, Qwarnstrom E, Holcombe M (2006) Formal agent-based modelling of intracellular chemical interactions. Bio Syst 85:37–45

    CAS  Google Scholar 

  • Pogson M, Holcombe M, Smallwood R, Qwarnstrom E (2008) Introducing spatial information into predictive NF-kappaB modelling–an agent-based approach. PLoS One 3:e2367

    PubMed  Google Scholar 

  • Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169

    PubMed  CAS  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B et al (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1:95–104

    PubMed  CAS  Google Scholar 

  • Reiss DJ, Baliga NS, Bonneau R (2006) Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7:280

    PubMed  Google Scholar 

  • Ringner M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    PubMed  CAS  Google Scholar 

  • Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR et al (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405–410

    PubMed  CAS  Google Scholar 

  • Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35:e99

    PubMed  Google Scholar 

  • Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012

    PubMed  CAS  Google Scholar 

  • Ruppin E, Papin JA, de Figueiredo LF, Schuster S (2010) Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr Opin Biotechnol 21:502–510

    PubMed  CAS  Google Scholar 

  • Santamaria R, Rizzetto L, Bromley M, Zelante T, Lee W, Cavalieri D et al (2011) Systems biology of infectious diseases: a focus on fungal infections. Immunobiology 216:1212–1227

    PubMed  CAS  Google Scholar 

  • Schuster S, Kreft JU, Brenner N, Wessely F, Theissen G, Ruppin E et al (2010) Cooperation and cheating in microbial exoenzyme production–theoretical analysis for biotechnological applications. Biotechnol J 5:751–758

    PubMed  CAS  Google Scholar 

  • Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, Ames L, Firon A, Green B, Cabral V, Marcet-Houben M, Jacobsen ID, Quintin13 J, Seider K, Frohner I, Glaser W, Jungwirth H, d’Enfert C, Ferrandon D, Gabaldón T, Hube B, Rupp S, Cormack B, Haynes K, Kuchler K (in preparation) Systematic phenotyping of a genome-scale candida glabrata deletion collection reveals novel antifungal tolerance genes

    Google Scholar 

  • Seal JB, Alverdy JC, Zaborina O, An G (2011) Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: towards characterizing host-pathogen interactions in gut-derived sepsis. Theor Biol Med Model 8:33

    PubMed  Google Scholar 

  • Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231:357–376

    PubMed  CAS  Google Scholar 

  • Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H et al (2010) Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol 11:R71

    PubMed  Google Scholar 

  • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18:261–274

    PubMed  CAS  Google Scholar 

  • Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    PubMed  CAS  Google Scholar 

  • Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21:319–330

    PubMed  CAS  Google Scholar 

  • Sorgo AG, Heilmann CJ, Dekker HL, Brul S, de Koster CG, Klis FM (2010) Mass spectrometric analysis of the secretome of Candida albicans. Yeast 27:661–672

    PubMed  CAS  Google Scholar 

  • Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG et al (2011) Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 10:1071–1081

    PubMed  CAS  Google Scholar 

  • Stastna M, Van Eyk JE (2012a) Improved and emerging gel-free separation and detection methods for proteomics. Proteomics 12:2902–2903

    PubMed  Google Scholar 

  • Stastna M, Van Eyk JE (2012b) Analysis of protein isoforms: can we do it better? Proteomics 12:2937–2948

    PubMed  CAS  Google Scholar 

  • Steinhoff C, Vingron M (2006) Normalization and quantification of differential expression in gene expression microarrays. Brief Bioinform 7:166–177

    PubMed  CAS  Google Scholar 

  • Sun Z, Zhu Y (2012) Systematic comparison of RNA-seq normalization methods using measurement error models. Bioinformatics 28:2584–2591

    PubMed  CAS  Google Scholar 

  • Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM et al (2010) Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J Proteome Res 9:761–776

    PubMed  CAS  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E et al (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    PubMed  CAS  Google Scholar 

  • Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    PubMed  CAS  Google Scholar 

  • Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896

    PubMed  CAS  Google Scholar 

  • Teutschbein J, Albrecht D, Potsch M, Guthke R, Aimanianda V, Clavaud C et al (2010) Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res 9:3427–3442

    PubMed  CAS  Google Scholar 

  • Tierney L, Linde J, Muller S, Brunke S, Molina JC, Hube B et al (2012) An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol 3:85

    PubMed  CAS  Google Scholar 

  • Tokarski C, Hummert S, Mech F, Figge MT, Germerodt S, Schroeter A et al (2012) Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi. Front Microbiol 3:129

    PubMed  CAS  Google Scholar 

  • Tomar N, Choudhury O, Chakrabarty A, De RK (2013) An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri Net based approach. Mol Biol Rep 40(2):1103–1125

    PubMed  CAS  Google Scholar 

  • Tyc KM, Klipp E (2011) Modeling dissemination of pathogenic fungi within a host: a cartoon for the interactions of two complex systems. J Comput Sci Syst Biol S1:001

    Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    PubMed  CAS  Google Scholar 

  • van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H et al (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8:R52

    Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    PubMed  CAS  Google Scholar 

  • Villas-Boas SG, Moxley JF, Akesson M, Stephanopoulos G, Nielsen J (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677

    PubMed  CAS  Google Scholar 

  • von Bertalanffy L (1969) In: General systems theory: foundations, development, applications. Revised (ed) Vol. pp. George Braziller, New York

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    PubMed  CAS  Google Scholar 

  • Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001

    PubMed  Google Scholar 

  • Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L et al (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10:e1001369

    PubMed  CAS  Google Scholar 

  • Weinstein JN (2001) Searching for pharmacogenomic markers: the synergy between omic and hypothesis-driven research. Dis Markers 17:77–88

    PubMed  CAS  Google Scholar 

  • Wierling C, Kuhn A, Hache H, Daskalaki A, Maschke-Dutz E, Peycheva S et al (2012) Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment. Mutat Res 746:163–170

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC et al (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    PubMed  CAS  Google Scholar 

  • Yan Z, Costanzo M, Heisler LE, Paw J, Kaper F, Andrews BJ et al (2008) Yeast barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat Methods 5:719–725

    PubMed  CAS  Google Scholar 

  • Yates JR 3rd, Carmack E, Hays L, Link AJ, Eng JK (1999) Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol 112:553–569

    PubMed  CAS  Google Scholar 

  • Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH et al (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268

    PubMed  CAS  Google Scholar 

  • Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12:553–558

    PubMed  CAS  Google Scholar 

  • Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N et al (2009) Edgetic perturbation models of human inherited disorders. Mol Syst Biol 5:321

    PubMed  Google Scholar 

Download references

Acknowledgments

Work on systems biology in the KK group has been supported by a grant from the Christian Doppler Research Society, and by grants of the Austrian Science Foundation (FWF-DACH Proj.: I-746-B11, FWF-P25333-B09), by the SysMo-MOSES project through the FFG, the WWTF, and by the IP-UNICELLSYS from the FP7 programme. Work on systems biology of fungal infection in the EK group has been supported by grants from the German Research Council (DFG: CRC618), the EU Marie-Curie Program (FinSysB, PITN-GA-2008-214004) and the EU FP7 programme (IP-UNICELLSYS and IP-SysteMtb). We would like to thank Sara Tierney for contributing to the artwork.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edda Klipp or Karl Kuchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tierney, L., Tyc, K., Klipp, E., Kuchler, K. (2014). 3 Systems Biology Approaches to Understanding and Predicting Fungal Virulence. In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_3

Download citation

Publish with us

Policies and ethics