Skip to main content

Miscellaneous Cold-Active Yeast Enzymes of Industrial Importance

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Cold-adapted organisms, thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. In this chapter, we describe the main properties of enzymes from cold-adapted yeasts and describe some of their potential biotechnological applications. The useful applications of these enzymes are widespread to a large number of industries like textile industry, food and dairy industry, brewing and wine industry, laundry, etc. Cold-active hydrolytic enzymes like lipases (reviewed in Chap.16), proteases, cellulases, and amylases can be used as an active agent in detergents applied for cold washing. Other potential applications of psychrophilic enzymes, apart from these, are in processes such as the hydrolysis of lactose in milk using β-galactosidases, extraction and clearing fruit juices using pectinases, meat tenderization or taste improvement of refrigerated meat using proteases, betterment of bakery products using glycosidases (e.g., amylases, xylanases).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alimardani-Theuil P, Gainvors-Claise A, Duchiron F (2011) Yeasts: An attractive source of pectinases—from gene expression to potential applications: a review. Proc Biochem 46:1525–1537

    Article  CAS  Google Scholar 

  • Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday C, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458

    Article  PubMed  CAS  Google Scholar 

  • Benesova E, Markova M, Kralova B (2005) α-glucosidase and β-glucosidase from psychrotrophic strain Arthrobacter sp C2–2. Czech J Food Sci 23:116–120

    CAS  Google Scholar 

  • Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  PubMed  Google Scholar 

  • Birgisson H, Delgado O, García Arroyo L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    PubMed  CAS  Google Scholar 

  • Borchert TV, Svendsen A, Andersen C, Nielsen B, Lauesgaard Nissen T, Kjerulff Sorren (2004) Amylase mutants. US Patent 6,673,589

    Google Scholar 

  • Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Industr Microbiol 17:432–437

    Article  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de Garcia V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalyst. Trends Biotechnol 21:543–549

    Article  PubMed  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-antarctic region. BMC Microbiol 12:251–260

    Article  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  PubMed  CAS  Google Scholar 

  • Chi Z, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Biores Technol 98:534–538

    Article  CAS  Google Scholar 

  • D’Amico S, Claviere P, Collins T (2002) Molecular basis of cold adaptation. Phil Trans R Soc Lond B 357:917–925

    Article  Google Scholar 

  • De Mot R, Verachtert H (1987) Purification and characterization of extracellular α-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654

    Article  PubMed  Google Scholar 

  • Federici F (1982) A note on milk clotting ability in the yeast genera Cryptococcus and Rhodotorula. J Appl Bacteriol 52:293–296

    Article  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  PubMed  CAS  Google Scholar 

  • Feller G (2012) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013, ID 512840

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold-adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Hoyoux A, Francois J M, Dubois P, Baise E, Jennes I, Genicot S (2005) Cold-active β-galactosidase, the process for its preparation and the use thereof. US Patent 2,005,196,835

    Google Scholar 

  • Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235

    Article  PubMed  CAS  Google Scholar 

  • Hamada S, Seike Y, Tanimori S, Sakamoto T, Kishida M (2011) Characterization of D-galacturonate reductase purified from the psychrophilic yeast species Cryptococcus diffluens. J Biosci Bioeng 111:518–521

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François JM, Baise E, Feller G, Gerday C (2001) Cold adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx J, Sonan G, Zeng Y, Feller G, Gerday Ch (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98:317–330

    PubMed  CAS  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 347–363

    Chapter  Google Scholar 

  • Kamada M, Oda K, Murao S (1972) The purification of the extracellular acid protease of Rhodotorula glutinis K-24. Agric Biol Chem 36:1103–1108

    Article  Google Scholar 

  • Karasová-Lipovová P, Strnad H, Spiwok V, Spiwok V, Malá S, Králová B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2–2. Enzyme Microb Technol 33:836–844

    Article  Google Scholar 

  • Khan Pathan AA, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of midre lovenbreen glacier, arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  Google Scholar 

  • Kim JY (2009) Isolation of Sporidiobolus ruineniae CO-3 and characterization of its extracellular protease. J Korean Soc Appl Biol Chem 52:1–10

    Article  CAS  Google Scholar 

  • Kim JY (2010) Isolation of protease-producing yeast, Pichia farinosa CO-2 and characterization of its extracellular enzyme. J Korean Soc Appl Biol Chem 53:133–141

    Article  CAS  Google Scholar 

  • Kim JT, Kang SG, Woo JH, Lee JH, Jeong BC, Kim SJ (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74:820–828

    Article  PubMed  CAS  Google Scholar 

  • Kuddus M, Roohi Arif JM, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258

    Article  CAS  Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Tohru Y, Nobuyoshi E (1999) Cold-active serine protease from psychrophilic Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611–617

    PubMed  CAS  Google Scholar 

  • Ladero M, Santos A, Garcia-Ochoa F (2000) Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme Microb Technol 27:583–592

    Article  PubMed  CAS  Google Scholar 

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calvino A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Appl Environ Microbiol 60:12–18

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Margesin R, Gander S, Zacke G (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005a) Cold-active polygalacturonase from psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem 69:419–421

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005b) A cold-active pectin lyase from the psychrophilic and basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biotechnol Appl Biochem 42:193–196

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M (2006) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Young TW (1987) Extracellular acid and alkaline proteases from Candida olea. J Gen Microbiol 133:1461–1469

    PubMed  CAS  Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55

    Article  PubMed  CAS  Google Scholar 

  • Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from antarctic yeast strain Cryptococcus laurentii AL27. Folia Microbiol 53:29–34

    Article  CAS  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday Ch (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterization of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 10:94–107

    Article  PubMed  CAS  Google Scholar 

  • Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  PubMed  CAS  Google Scholar 

  • Ray MK, Uma Devi K, Seshu Kumar G, Shivaji S (1992) Extracellular protease from the antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    PubMed  CAS  Google Scholar 

  • Reid VJ, Theron LW, du Toit M, Divol B (2012) Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384. Appl Environ Microbiol 78:6838–6849

    Article  PubMed  CAS  Google Scholar 

  • Rüchel R (1981) Properties of a purified proteinase from the yeast Candida albicans. Biochem Biophys Acta 659:99–113

    Article  PubMed  Google Scholar 

  • Rüchel R, Boning B, Borg M (1986) Characterization of a secretory proteinase of Candida parapsilosis and evidence for the absence of the enzyme during infection in vitro. Infect Immun 53:411–419

    PubMed  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Baré G, Jacques P, Jabrane A, Ongena M, Van Heugen JC, Devreese B, Thonart P (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276:12691–12696

    Article  PubMed  CAS  Google Scholar 

  • Sheik Asraf S, Gunasekaran P (2010) Current trends of β-galactosidase research and application. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, Spain, pp 880–890

    Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 β galactosidase from a psychrophilic antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Solano DM, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Biores Technol 115:196–207

    Article  Google Scholar 

  • Song Ch, Chi Z, Li J, Wang X (2010) β-galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess Biosyst Eng 33:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Straathof AJJ, Panke S, Schmidt A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  PubMed  CAS  Google Scholar 

  • Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665

    Article  PubMed  CAS  Google Scholar 

  • Sturley SL, Young TW (1988) Extracellular protease activity in a strain of Saccharomyces cerevisiae. J Inst Brew London 94:23–27

    Article  CAS  Google Scholar 

  • Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase Candida lipolytica. Argic Biol Chem 40:1087–1092

    Article  CAS  Google Scholar 

  • Togni G, Sanglard D, Falchetto R (1991) Isolation and nucleotide sequence of the extracellular acid protease gene (ACP) from yeast Candida tropicalis. FEBS Lett 286:181–185

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Hall SRT, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeast from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp.nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Kur J, Białkowska A, Cieśliński H, Kalinowska H, Bielecki S (2003a) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol Eng 20:317–324

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003b) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and α-glucosidase production by the endemic antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136

    Google Scholar 

  • Wang Q, Hou Y, Yan P (2012) Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods. J Food Sci 77:337–342

    Article  Google Scholar 

  • Wierzbicka-Woś A, Cieśliński H, Wanarska M, Kozłowska-Tylingo K, Hildebrandt P, Kur J (2011) A novel cold-active β-galactosidase from the Paracoccus sp. 32d—gene cloning, purification and characterization. Microb Cell Fact 10:108–120

    Article  PubMed  Google Scholar 

  • Yamada T, Ogrydziak DM (1983) Extracellular acid proteases produced by Saccharomycopsis lipolytica. J Bacteriol 154:23–31

    PubMed  CAS  Google Scholar 

  • Zaliha RN, Salleh AB, Basri M, Mohamad Ali MSB (2012) Cold active enzyme and method thereof. US Patent 2012/0058514 A1

    Google Scholar 

  • Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feller G, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Sonan G, Gerday Ch (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321

    Article  PubMed  CAS  Google Scholar 

  • Zimmer Ch, Platz T, Cadez N, Giffhorn F, Kohring GW (2006) A cold-active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 73:132–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Turkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Białkowska, A., Turkiewicz, M. (2014). Miscellaneous Cold-Active Yeast Enzymes of Industrial Importance. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_17

Download citation

Publish with us

Policies and ethics