Skip to main content

Improving Particle Filter with Better Proposal Distribution for Nonlinear Filtering Problems

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7992))

Abstract

Designing better proposal distributions can greatly affect the performance of the particle filters, which has been extensively studied in the literature. In this paper, we propose to design better proposal distribution using a new version of unscented Kalman filter- the iterated unscented Kalman filter (IUKF). The IUKF makes use of both statistical and analytical linearization techniques in different steps of the filtering process, which makes it a better candidate for designing proposal distribution in particle filter framework. Each particle is updated using an iterative manner. Through this process, the algorithm can make better use of the current observation for state estimation. To evaluate the performance of the proposed particle filter, we use a synthetic model and a real-world model for the experiments. The experimental results have shown that the proposed algorithm outperforms the alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vision. 29, 5–28 (1998)

    Article  Google Scholar 

  2. Fasheng, W.: Particle filters for visual tracking. Commun. Comput. Inform. Sci. 152, 107–112 (2011)

    Article  Google Scholar 

  3. Doucet, A., Freitas, J., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Book  MATH  Google Scholar 

  4. Fasheng, W., Quan, G., Yuejin, L.: A Kalman Particle Filter for Bearing-only Target Tracking. J. Comput. Inform. Syst. 7, 5628–5635 (2011)

    Google Scholar 

  5. Creal, D.: A survey of sequential Monte Carlo methods for economics and finance. Econometric Rev. 31, 245–296 (2012)

    Article  Google Scholar 

  6. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. J. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  7. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE-Proc. F. 140, 107–113 (1993)

    Google Scholar 

  8. Doucet, A.: On sequential simulation-based methods for Bayesian filtering. Technical report, Department of Engineering, Cambridge University (1998)

    Google Scholar 

  9. Li, L., Ji, H., Luo, J.: The iterated extended Kalman particle filter. In: International Symposium on Communication and Information Technology, pp. 1172–1175. IEEE Press, New York (2005)

    Google Scholar 

  10. Merwe, R., Doucet, A., Freitas, N., Wan, E.: The Unscented Particle Filter. Technical report, Engineering Department, Cambridge University (2000)

    Google Scholar 

  11. Guo, W., Han, C., Lei, M.: Improved Unscented Particle Filter for Nonlinear Bayesian Estimation. In: International Conference on Information Fusion, pp. 1–6. IEEE Press, New York (2007)

    Google Scholar 

  12. Wang, F., Lin, Y., Zhang, T., Liu, J.: Particle Filter with Hybrid Proposal Distribution for Nonlinear State Estimation. J. Comput. 6, 2491–2501 (2011)

    Google Scholar 

  13. Banani, S., Masnadi-Shirazi, A.: A New Version of Unscented Kalman Filter. In: Proc. World Academy of Science, Engineering, and Technology, vol. 20, pp. 192–197 (2007)

    Google Scholar 

  14. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking. IEEE T. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  15. Crisan, D., Doucet, A.: A Survey of Convergence Results on Particle Filtering Methods for Practitioners. IEEE T. Signal Process. 50, 736–746 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, F., Li, X., Lu, M. (2013). Improving Particle Filter with Better Proposal Distribution for Nonlinear Filtering Problems. In: Ren, K., Liu, X., Liang, W., Xu, M., Jia, X., Xing, K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2013. Lecture Notes in Computer Science, vol 7992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39701-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39701-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39700-4

  • Online ISBN: 978-3-642-39701-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics