Skip to main content

Part of the book series: Lecture Notes in Applied Mathematics and Mechanics ((LAMM,volume 1))

Abstract

The birth of variational calculus and the principle of virtual work goes back to the 17th and 18th century, and the first draft of a discrete variational method with “elementwise” triangular shape functions was given by Leibniz (1697). First analytical studies were made by Schellbach (1851) and then, already with numerical results, by Rayleigh (1877). The mathematician Ritz (1909) marks the first discrete (direct) variational method for the linear elastic Kirchhoff plate, and the engineer Galerkin (1915) published his seminal article on FEM for linear elastic continua, postulating the orthogonality of the residua of equilibrium with respect to the test functions, but both, Ritz and Galerkin, used test and trial functions within the whole domain as supports. Courant (1943) was the first to introduce triangular and rectangular “finite elements” for the 2D-St.-Venant torsion problem of a prismatic bar (Poisson equ.), and Clough and his team (1956) published the first modern 2D-FEM for arrowed aircraft wings. Also Wilson, Melosh and Taylor with their important schools, e.g. Bathe and Simo, promoted in Berkeley the new discipline of “Computational Mechanics”. Argyris (since 1959 in Stuttgart) and Zienkiewicz (since 1965 in Swansea), together with Irons e.g., developed primal FEM in a systematic way: hierarchical classes of FEs with different topologies and ansatz techniques for solid and fluid mechanics.

Mixed finite elements, advocated for non-robust problems, are usually based on dual mixed variational functionals (yielding saddle point problems) by Hellinger (1914), Prange (1916) and Reissner (1950). Important elements came, e.g., from Cruceix, Raviart (1973), Raviart, Thomas (1977) and Brezzi, Douglas, Marini (1987). For numerical stability of saddle point problems, the Brezzi-Babuška global (infsup) stability conditions have to be fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leibniz, G.: Communicatio suae pariter, duarumque alienarum ad adendum sibi primum a Dn. Jo. Bernoullio, deinde a Dn. Marchione Hospitalio communicatarum solutionum problematis curvae celerrimi descensus a Dn. Jo. Bernoullio geometris publice propositi, una cum solutione sua problematis alterius ab eodem postea propositi. Acta Eruditorum, 201–206 (May 1697)

    Google Scholar 

  2. Stein, E.: The origins of mechanical conservation principles and variational calculus in the the 17th century. GAMM-Mitt 2, 145–163 (2011)

    Article  Google Scholar 

  3. Stein, E., Wichmann, K.: New insight into optimization an variational problems in the 17th century. Engineering Computations 20, 699–724 (2003)

    Article  MATH  Google Scholar 

  4. Schellbach, K.H.: Probleme der Variationsrechnung. Crelle’s Journal für die reine und angewandte Mathematik 41, 293–363 + 1 table (1851)

    Google Scholar 

  5. Strutt, J.W., Lord Rayleigh, F.R.S.: The theory of sound, vol. I. Macmillan and Co., London (1877)

    Google Scholar 

  6. Ritz, W.: Über eine neue Methode zur Lösung gewisser Probleme der mathematischen Physik. Journal für die reine und angewandte Mathematik 135, 1–61 (1909)

    Google Scholar 

  7. Galerkin, B.G.: Beams and plates, series for some problems of elastic equilibrium of beams and plates (article in russian language). Wjestnik Ingenerow 10, 897–908 (1915)

    Google Scholar 

  8. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  9. Langefors, B.: Analysis of elastic structures by matrix transformations. J. Aeron. Sci. 19, 451–458 (1952)

    Article  MATH  Google Scholar 

  10. Argyris, J.H.: Energy theorems and structural analysis. Aircraft Engineering 26 and 27, 347–356, 383–387, 394 and 42–58, 80–94, 125–134, 154–158 (1954 and 1955)

    Google Scholar 

  11. Livesley, R.: Matrix methods of structural analysis. Pergamon Press (1964)

    Google Scholar 

  12. Zurmühl, R.: Ein Matrizenverfahren zur Behandlung von Biegeschwingungen. Ingenieur-Archiv 32, 201–213 (1963)

    Article  MATH  Google Scholar 

  13. Fenves, S.: Structural analysis by networks, matrices and computers. J. Struct. Div. ASCE 92, 199–221 (1966)

    Google Scholar 

  14. Zuse, K.: Entwicklungslinien einer Rechengeräteentwicklung von der Mechanik zur Elektronik (special print). Friedrich Vieweg & Sohn Braunschweig (1962)

    Google Scholar 

  15. Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. In: Verhandlungen des 2. Internationalen Kongresses für technische Mechanik, Zürich, pp. 131–137 (1926)

    Google Scholar 

  16. Jirousek, J., Guex, L.: The hybrid-Trefftz finite element model and its application to plate bending. Int. J. Num. Meth. Engg. 23, 651–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peters, K., Stein, E., Wagner, W.: A new boundary type finite element for 2D- and 3D-elastic solids. Int. J. Num. Meth. Engg. 37, 1009–1025 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hrennikoff, A.P.: Plane stress and bending of plates by method of articulated framework. Ph.D. thesis, Dpt. of Civil and Sanitary Engg., M.I.T., Boston, USA (May 1940)

    Google Scholar 

  19. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.J.: Stiffness and deflection analysis of complex strucutres. Journal of the Aeronautical Sciences 23, 805–823 (1956)

    Article  MATH  Google Scholar 

  20. Melosh, R.J.: Basis for derivation of matrices for the direct stiffness method. AIAA J. 1, 1631–1637 (1963)

    Article  Google Scholar 

  21. Wilson, E., Farhoomand, I., Bathe, K.: Nonlinear dynamic analysis of complex structures. Earth-quake Engineering and Structural Dynamics 1, 241–252 (1973)

    Article  Google Scholar 

  22. Argyris, J., Scharpf, D.: Some general consideration on the natural mode technique. Aeron. J. of the Royal Aeron. Soc. 73, 218–226, 361–368 (1969)

    Google Scholar 

  23. Zienkiewicz, O., Cheung, Y.: The finite element method, vol. 1. McGraw-Hill (1967)

    Google Scholar 

  24. Zienkiewicz, O., Taylor, R.: The finite element method, 5th edn., vol. 1-3. Butterworth-Heinemann (2000)

    Google Scholar 

  25. Bathe, K.-J., Wilson, E.: Numerical Methods in finite element analysis. Prentice-Hall, Inc. (1976)

    Google Scholar 

  26. Hughes, T.J.R.: The finite element method: Linear static and dynamic finite element analysis. Prentice-Hall Internat. (1987)

    Google Scholar 

  27. Szabó, B., Babuška, I.: Finite Element Analysis. John Wiley & Sons, New York (1991)

    MATH  Google Scholar 

  28. Delaunay, B.N.: Sur la sphère vide. Bulletin of Academy of Sciences of the USSR, 793–800 (1934)

    Google Scholar 

  29. George, P.L.: Automatic mesh generation. Applications to finite element methods. Wiley (1991)

    Google Scholar 

  30. Löhner, R., Parikh, P.: Three-dimensional grid generation by the advancing front method. Int. J. Numer. Methods Fluids 8, 1135–1149 (1988)

    Article  MATH  Google Scholar 

  31. Shephard, M., Georges, M.: Automatic three-dimensional mesh generation by the finite octree technique. Tech. Rep. 1, SCOREC Report (1991)

    Google Scholar 

  32. Rivara, M.: Mesh refinement processes based on the generalized bisection of simplices. SIAM Journal on Numerical Analysis 21, 604–613 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Niekamp, R., Stein, E.: An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations. Computers & Structures 80, 317–328 (2002)

    Article  Google Scholar 

  34. Melenk, J.: The Partition of Unity Finite Element Method: Basic Theory and Applications. TICAM report, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin (1996)

    Google Scholar 

  35. Apel, T.: Interpolation in h-version finite element spaces. In: Stein et al. [44], vol. 1, ch. 3, pp. 55–70 (2004)

    Google Scholar 

  36. Brenner, S.C., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Fundamentals, vol. 1, ch. 4, pp. 73–118. Wiley (2004)

    Google Scholar 

  37. Szabó, B., Düster, A., Rank, E.: The p-version of the finite element method. In: Stein et al. [44], vol. 1, ch. 5, pp. 119–139 (2004)

    Google Scholar 

  38. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. algorithms. Finite Elem. Anal. Des. 25, 61–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Irons, B.M., Zienkiewicz, O.C.: The isoparametric finite element system – a new concept in finite element analysis. In: Proc. Conf.: Recent Advances in Stress Analysis, Royal Aeronautical Society (1968)

    Google Scholar 

  40. Gauß, C.F.: Werke, vol. 1-6. Dieterich, Göttingen (1863-1874)

    Google Scholar 

  41. Buck, K.E., Scharpf, D.W.: Einführung in die Matrizen-Verschiebungsmethode. In: Buck, K.E., Scharpf, D.W., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Statik, pp. 1–70. Wilhelm Ernst & Sohn, Berlin (1973)

    Google Scholar 

  42. Stein, E., Wunderlich, W.: Finite-Element-Methoden als direkte Variationsverfahren in der Elastostatik. In: Buck, K.E., Scharpf, D.W., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Statik, pp. 71–125. Wilhelm Ernst & Sohn, Berlin (1973)

    Google Scholar 

  43. Bathe, K.J.: Finite element procedures, 1st edn. Prentice-Hall (1982) (2nd ed. Cambridge 2006)

    Google Scholar 

  44. Stein, E., de Borst, R., Hughes, T. (eds.): Encyclopedia of computational mechanics (ECM), vol. 1, Fundamentals, vol. 2, Solids and Structures, vol. 3, Fluids. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  45. Stein, E., Rüter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein et al. [44], vol. 2, pp. 5–58 (2004)

    Google Scholar 

  46. Braess, D.: Finite elements, 2nd edn. Cambridge University Press (2001) (1st ed. in German language, 1991)

    Google Scholar 

  47. Menabrea, F.L.: Sul principio di elasticità, delucidazioni di L.F.M. (1870)

    Google Scholar 

  48. Betti, E.: Teorema generale intorno alle deformazioni che fanno equilibrio a forze che agiscono alla superficie. Il Nuovo Cimento, Series 2(7-8), 87–97 (1872)

    Google Scholar 

  49. Castigliano, C.A.: Théorie de l’équilibre des systèmes élastiques et ses applications. Nero, Turin (1879)

    Google Scholar 

  50. Ostenfeld, A.S.: Teknisk Statik I. 3rd edn. (1920)

    Google Scholar 

  51. Klöppel, K., Reuschling, D.: Zur Anwendung der Theorie der Graphen bei der Matrizenformulierung statischer Probleme. Der Stahlbau 35, 236–245 (1966)

    Google Scholar 

  52. Möller, K.-H., Wagemann, C.-H.: Die Formulierungen der Einheitsverformungs- und der Einheitsbelastungszustände in Matrizenschreibweise mit Hilfe der Graphen. Der Stahlbau 35, 257–269 (1966)

    Google Scholar 

  53. de Veubeke, B.F. (ed.): Matrix methods of structural analysis. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  54. Robinson, J.: Structural Matrix Analysis for the Engineer. John Wiley & Sons, New York (1966)

    MATH  Google Scholar 

  55. Pian, T.H.-H.: Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1533–1536 (1964)

    Article  Google Scholar 

  56. Pian, T.H.-H., Tong, P.: Basis of finite element methods for solid continua. Int. J. Num. Meth. Engng. 1, 3–28 (1964)

    Article  Google Scholar 

  57. Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein, F., Müller, C. (eds.) Enzyklopädie der Mathematischen Wissenschaften 4 (Teil 4), pp. 601–694. Teubner, Leipzig (1914)

    Google Scholar 

  58. Prange, G.: Die Variations- und Minimalprinzipe der Statik der Baukonstruktion. Habilitationsschrift, Technische Hochschule Hannover (1916)

    Google Scholar 

  59. Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29, 90–95 (1950)

    MathSciNet  MATH  Google Scholar 

  60. Legendre, A.-M.: Exercises du calcul intégral, Paris, vol. 1-3 (1811/1817)

    Google Scholar 

  61. Prager, W., Synge, J.: Approximations in eleasticity based on the concept of function spaces. Quart. Appl. Math. 5, 241–269 (1949)

    MathSciNet  Google Scholar 

  62. Synge, J.: The hypercircle in mathematical physics. Cambridge University Press (1957)

    Google Scholar 

  63. Babuška, I.: The finite element method with lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  64. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Rev. Fr. Automat. Inf. Rech. Opérat. Sér. Rouge 8, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  65. Zienkiewicz, O.C., Qu, S., Taylor, R.L., Nakazawa, S.: The patch test for mixed formulations. Int. J. Num. Meth. Eng. 23, 1873–1883 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  66. Prager, W.: Variational principles for elastic plates with relaxed continuity requirements. Int. J. Solids & Structures 4, 837–844 (1968)

    Article  MATH  Google Scholar 

  67. Oden, J., Carey, G.: Finite elements. Mathematical aspects, vol. IV. Prentice Hall, Inc. (1983)

    Google Scholar 

  68. Babuška, I.: The finite element method with lagrangian multipliers. Numerische Mathematik 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  69. Auricchio, F., Brezzi, F., Lovadina, C.: Mixed finite element methods. In: Stein et al. [44], vol. 1, ch. 9, pp. 237–278 (2004)

    Google Scholar 

  70. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  71. Herrmann, L.R.: Finite-element bending analysis for plates. J. Engg. Mech. EM 5 93, 13–26 (1967)

    Google Scholar 

  72. Prato, C.A.: Shell finite element method via Reissner’s principle. Int. J. Solids & Structures 5, 1119–1133 (1969)

    Article  MATH  Google Scholar 

  73. Bathe, K.-J., Dvorkin, E.: A four-node plate bending element based on mindlin reissner plate theory and a mixed interpolation. Int. J. Num. Meth. Eng. 21, 367–383 (1985)

    Article  MATH  Google Scholar 

  74. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. R3, 33–76 (1973)

    MathSciNet  Google Scholar 

  75. Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. In: Galigani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)

    Chapter  Google Scholar 

  76. Stenberg, R.: Analysis of mixed finite element methods for the Stokes problem: A unified approach. Math. Comp. 42, 9–23 (1984)

    MathSciNet  MATH  Google Scholar 

  77. Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: A new mixed finite element for plane elasticity. Japan. J. Appl. Math. 1, 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  78. Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  79. Brezzi, F., Douglas, J.J., Marini, L.D.: Two families of mixed finite elements for second-order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  80. Brezzi, F., Douglas Jr., J., Fortin, M., Marini, L.D.: Efficient rectangular mixed finite elements in two and three space variables. RAIRO M2AN 21, 581–604 (1987)

    Google Scholar 

  81. Bischoff, M., Wall, W., Bletzinger, K.-U., Ramm, E.: Models and finite elements for thin-walled structures. In: Stein et al. [44], vol. 2-3, pp. 59–137 (2004)

    Google Scholar 

  82. Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Num. Meth. Eng. 3, 275–290 (1973)

    Article  Google Scholar 

  83. Belytschko, T., Liu, W., Moran, B.: Nonlinear finite elements for continua and structures. Wiley (2000)

    Google Scholar 

  84. MacNeal, R.: A simple quadrilateral shell element. Computers & Structures 183, 175–183 (1978)

    Article  Google Scholar 

  85. Hughes, T.J.R., Tezduyar, T.: Finite elements based upon Mindlin plate theory with particular reference to the 4-node isoparametric element. J. Appl. Mech. 48, 587–596 (1981)

    Article  MATH  Google Scholar 

  86. Bathe, K.-J., Dvorkin, E.: A formulation of general shell elements – the use of mixed interpolation of tensorial components. Int. J. Num. Meth. Eng. 22, 697–722 (1986)

    Article  MATH  Google Scholar 

  87. Bathe, K.-J., Brezzi, F., Cho, S.: The MITC7 and MITC9 plate elements. Computers & Structures 32, 797–814 (1989)

    Article  MATH  Google Scholar 

  88. Bathe, K.-J., Brezzi, F., Fortin, M.: Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Num. Meth. Eng. 28, 1787–1801 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  89. Hughes, T.J.R., Liu, W.K.: Nonlinear finite element analysis of shells, part i: three-dimensional shells. Comput. Methods Appl. Mech. Engng. 26, 331–361 (1981)

    Article  MATH  Google Scholar 

  90. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 29, 1595–1638 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  91. Tessler, A., Hughes, T.: A three-node mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Engng. 50, 71–101 (1985)

    Article  MATH  Google Scholar 

  92. Taylor, R., Auricchio, F.: Linked interpolation for Reissner-Mindlin plate elements: part ii. a simple triangle. Int. J. Num. Meth. Eng. 36, 3057–3066 (1993)

    Article  MATH  Google Scholar 

  93. Bischoff, M., Taylor, R.: A three-dimensional shell element with an exact thin limit. In: Waszczyszyn, Z., Parmin, J. (eds.) Proceedings of the 2nd European Conference on Computational Mechanics. Fundacja Zdrowia Publicznego, Cracow (2001)

    Google Scholar 

  94. Armero, F.: On the locking and stability of finite elements in finite deformation plane strain problems. Computers & Structures 75, 261–290 (2000)

    Article  Google Scholar 

  95. Reese, S.: On a consistent hourglass stabilization technique to treat large deformations and thermomechanical coupling in plane strain problems. Int. J. Num. Meth. Eng. 57, 1095–1127 (2003)

    Article  MATH  Google Scholar 

  96. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press (1968)

    Google Scholar 

  97. Stolarski, H., Belytschko, T.: Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation. Comput. Methods Appl. Mech. Engng. 60, 195–216 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  98. Buck, K.E., Scharpf, D.W., Schrem, E., Stein, E.: Einige allgemeine Programmsysteme für finite Elemente. In: Buck, K.E., Scharpf, D.W., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Statik, pp. 399–454. Wilhelm Ernst & Sohn, Berlin (1973)

    Google Scholar 

  99. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Num. Meth. Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  100. Reese, S., Tini, V., Kiliclar, Y., Frischkorn, J., Schwarze, M.: Stability of mixed finite element formulations – a new approach, ch. 7, pp. 51–60. Springer (2011)

    Google Scholar 

  101. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  102. Ibrahimbegovic, A.: Nonlinear solid mechanics – theoretical formulations and finite element solution methods. Springer (2009)

    Google Scholar 

  103. Stein, E. (ed.): Error-controlled adaptive finite elements in solid mechanics. Wiley (2003)

    Google Scholar 

  104. Armero, F.: Elastoplastic and viscoplastic deformations in solids and structures. In: Stein et al. [44], vol. 2, pp. 227–264 (2004)

    Google Scholar 

  105. Miehe, C., Schotte, J.: Crystal plasticity and evolution of polycrystalline microstructure. In: Stein et al. [44], vol. 2, ch. 8, pp. 267–290 (2004)

    Google Scholar 

  106. Hulbert, G.M.: Computational Structural Dynamics. In: Stein et al. [44], vol. 2, ch. 5, pp. 169–194 (2004)

    Google Scholar 

  107. Chen, S., Hansen, J.M., Tortorelli, D.A.: Unconditional energy stable implicit time integration: application to multibody systems analysis and design. Int. J. Num. Meth. Eng. 48, 791–822 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  108. Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulation and error estimates. Comput. Methods Appl. Mech. Engng. 66, 339–363 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  109. Simo, J.C., Tarnow, N.: The discrete energy momentum method conserving algorithms for nonlinear elastodynamics. ZAMP 43, 757–793 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  110. Zavarise, G., Wriggers, P. (eds.): Trends in Computational Contact Mechanics. LNACM, vol. 58. Springer, Berlin (2011)

    MATH  Google Scholar 

  111. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  112. Wriggers, P., Zavarise, G.: Computational Contact Mechanics. In: Stein et al. [44], vol. 2, ch. 6, pp. 195–226 (2004)

    Google Scholar 

  113. Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics. LNACM, vol. 20. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  114. Zohdi, T.I.: Homogenization Methods and Multiscale Modeling. In: Stein et al. [44], vol. 2, ch. 12, pp. 407–430 (2004)

    Google Scholar 

  115. Loehnert, S., Belytschko, T.: A multiscale projection method for macro/micro-crack simulations. Int. J. Num. Meth. Eng. 71, 1466–1482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  116. Fries, T.-P.: A corrected xfem approximation without problems in blending elements. Int. J. Num. Meth. Eng. 75, 503–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  117. Loehnert, S., Mueller-Hoeppe, D.: 3D multiscale projection method for micro-/Macrocrack interaction simulations. In: Mueller-Hoeppe, D., Loehnert, S., Reese, S. (eds.) Recent Developments and Innovative Applications, vol. 59, pp. 223–230. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  118. Rüter, M., Stein, E.: Goal-oriented residual error estimates for XFEM approximations in LEFM. In: Mueller-Hoeppe, D., Loehnert, S., Reese, S. (eds.) Recent Developments and Innovative Applications, vol. 59, pp. 231–238. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  119. Aharonov, E., Rothman, D.: Non-newtonian flow (through porous media): a lattice-boltzmann method. Geop. 20, 679–682 (1993)

    Google Scholar 

  120. Chen, S., Doolen, G.: Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  121. Han, K., Feng, Y.T., Owen, D.R.J.: Numerical simulation of irregular particle transport in turbulent flows using coupled lbm-dem. Comput. Model. Eng. Sci. 18(2), 87–100 (2007)

    MathSciNet  MATH  Google Scholar 

  122. Cundall, P., Strack, O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  123. Hu, H.H., Joseph, D.D., Crochet, M.J.: Direct simulation of fluid particle motions. Theor. Comp. Fluid Dyn. 3, 285–306 (1992)

    Article  MATH  Google Scholar 

  124. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Google Scholar 

  125. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  126. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer (2003)

    Google Scholar 

  127. Hu, H.Y., Chen, J.S., Hu, W.: Reproducing kernel enhanced local radial collocation method. In: Ferreira, A., Kansa, E., Fasshauer, G., Leitão, V. (eds.) Meshless Method, pp. 175–188. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stein, E. (2014). History of the Finite Element Method – Mathematics Meets Mechanics – Part I: Engineering Developments. In: Stein, E. (eds) The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39905-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39905-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39904-6

  • Online ISBN: 978-3-642-39905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics