Skip to main content

Braneworld Black Holes

  • Conference paper
  • First Online:
Progress in Mathematical Relativity, Gravitation and Cosmology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 60))

Abstract

In this article we review the present status of the numerical construction of black holes in the Randall–Sundrum II braneworld model. After reviewing the new numerical methods to solve the elliptic Einstein equations, we numerically construct a black hole solution in five-dimensional anti-de Sitter (AdS5) space whose boundary geometry is conformal to the four-dimensional Schwarzschild solution. We argue that such a solution can be viewed as the infinite radius limit of a braneworld black hole, and we provide convincing evidence for its existence. By deforming this solution in AdS we can then construct braneworld black holes of various sizes. We find that standard 4d gravity on the brane is recovered when the radius of the black hole on the brane is much larger than the radius of the bulk AdS space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this discussion we are implicitly assuming that \({\xi }^{a}\) is not a Killing vector.

  2. 2.

    In Riemannian manifolds with boundaries, Anderson [29] has shown that imposing ξ a = 0 and Dirichlet or Neumann conditions for the induced metric on an given boundary gives rise to an ill posed problem.

  3. 3.

    The Schwarzschild radial coordinate R is related to the compact radial coordinate r as \(R = \frac{R_{0}} {1-{r}^{2}}\).

  4. 4.

    For a well-posed elliptic problem, as is our case, one should expect that such a solution exists and it is close to the solution in Sect. 3.

  5. 5.

    Recall that a classical solution to the Einstein equations need only be C 2.

References

  1. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221].

    Google Scholar 

  2. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064].

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Garriga and T. Tanaka, Phys. Rev. Lett. 84 (2000) 2778 [hep-th/9911055].

    Article  MathSciNet  MATH  Google Scholar 

  4. S. B. Giddings, E. Katz and L. Randall, JHEP 0003 (2000) 023 [hep-th/0002091].

    Article  MathSciNet  Google Scholar 

  5. A. Chamblin, S. W. Hawking and H. S. Reall, Phys. Rev. D 61 (2000) 065007 [hep-th/9909205].

    Article  MathSciNet  Google Scholar 

  6. R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 0001 (2000) 007 [hep-th/9911043].

    Article  MathSciNet  Google Scholar 

  7. H. Kudoh, T. Tanaka and T. Nakamura, Phys. Rev. D 68 (2003) 024035 [gr-qc/0301089].

    Google Scholar 

  8. H. Kudoh, Phys. Rev. D 69 (2004) 104019 [Erratum-ibid. D 70 (2004) 029901] [hep-th/0401229].

    Google Scholar 

  9. H. Yoshino, JHEP 0901 (2009) 068 [arXiv:0812.0465 [gr-qc]].

    Google Scholar 

  10. B. Kleihaus, J. Kunz, E. Radu and D. Senkbeil, Phys. Rev. D 83 (2011) 104050 [arXiv:1103.4758 [gr-qc]].

    Google Scholar 

  11. R. Emparan, A. Fabbri and N. Kaloper, JHEP 0208 (2002) 043 [hep-th/0206155].

    Article  MathSciNet  Google Scholar 

  12. A. L. Fitzpatrick, L. Randall and T. Wiseman, JHEP 0611 (2006) 033 [hep-th/0608208].

    Article  MathSciNet  Google Scholar 

  13. A. Kaus and H. S. Reall, JHEP 0905 (2009) 032 [arXiv:0901.4236 [hep-th]].

    Google Scholar 

  14. R. Suzuki, T. Shiromizu and N. Tanahashi, Phys. Rev. D 82 (2010) 085029 [arXiv:1007.1820 [hep-th]].

    Google Scholar 

  15. A. Kaus, arXiv:1105.4739 [hep-th].

    Google Scholar 

  16. P. Figueras, J. Lucietti and T. Wiseman, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489 [hep-th]].

    Google Scholar 

  17. P. Figueras and T. Wiseman, Phys. Rev. Lett. 107 (2011) 081101 [arXiv:1105.2558 [hep-th]].

    Google Scholar 

  18. S. Abdolrahimi, C. Cattoen, D. N. Page and S. Yaghoobpour-Tari, arXiv:1206.0708 [hep-th].

    Google Scholar 

  19. S. Abdolrahimi, C. Cattoen, D. N. Page and S. Yaghoobpour-Tari, arXiv:1212.5623 [hep-th].

    Google Scholar 

  20. M. Headrick, S. Kitchen and T. Wiseman, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822 [gr-qc]].

    Google Scholar 

  21. A. Adam, S. Kitchen and T. Wiseman, Class. Quant. Grav. 29 (2012) 165002 [arXiv:1105.6347 [gr-qc]].

    Google Scholar 

  22. T. Wiseman, arXiv:1107.5513 [gr-qc].

    Google Scholar 

  23. P. Figueras and T. Wiseman, Phys. Rev. Lett. 110 (2013) 171602 [arXiv:1212.4498 [hep-th]].

    Google Scholar 

  24. S. Fischetti, D. Marolf and J. Santos, arXiv:1212.4820 [hep-th].

    Google Scholar 

  25. Y. Choquet-Bruhat, Acta. Math. 88 (1952), 141–225.

    Article  MathSciNet  Google Scholar 

  26. D. Garfinkle, Phys. Rev. D 65 (2002) 044029 [gr-qc/0110013].

    Google Scholar 

  27. F. Pretorius, Class. Quant. Grav. 22 (2005) 425 [gr-qc/0407110].

    Google Scholar 

  28. F. Pretorius, Phys. Rev. Lett. 95 (2005) 121101 [gr-qc/0507014].

    Google Scholar 

  29. M. T. Anderson Geom. Topol. 12 2009–45 [math/0612647].

    Google Scholar 

  30. J. P. Bourguignon, In Global differential geometry and global analysis (Berlin, 1979), vol. 838 of Lecture notes in Math. pp 42–63, Springer, Berlin 1981.

    Google Scholar 

  31. D. J. Gross, M. J. Perry and L. G. Yaffe, Phys. Rev. D 25 (1982) 330.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. de Haro, S. N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230].

    Article  MATH  Google Scholar 

  33. J. E. Santos and B. Way, JHEP 1212 (2012) 060 [arXiv:1208.6291 [hep-th]].

    Google Scholar 

  34. D. Marolf, private communication.

    Google Scholar 

  35. P. Figueras and T. Wiseman, to appear.

    Google Scholar 

  36. S. de Haro, K. Skenderis and S. N. Solodukhin, Class. Quant. Grav. 18 (2001) 3171 [hep-th/0011230].

    Article  MATH  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to acknowledge the contributions of my collaborators J. Lucietti and especially T. Wiseman, without whom this work would not have been possible. I would also like to thank the organisers of the ERE2012 meeting in Guimarães (Portugal) for the invitation and for such a successful and enjoyable event. I am supported by an EPSRC postdoctoral fellowship [EP/H027106/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Figueras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueras, P. (2014). Braneworld Black Holes. In: García-Parrado, A., Mena, F., Moura, F., Vaz, E. (eds) Progress in Mathematical Relativity, Gravitation and Cosmology. Springer Proceedings in Mathematics & Statistics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40157-2_3

Download citation

Publish with us

Policies and ethics