Skip to main content

Land Use-Land Cover Dynamics at the Metropolitan Fringe

  • Chapter
  • First Online:
Modeling of Land-Use and Ecological Dynamics

Part of the book series: Cities and Nature ((CITIES))

  • 1945 Accesses

Abstract

Diverse pressures for change operate at the outer metropolitan fringe. This paper examines the spatial and temporal dynamics of change in this area. We set up a simple model that incorporates spatial and temporal dynamics of functional (land use) and structural (land cover) interactions. We posit that land use (development) changes the ecosystem functions at the edge of urban areas expressed in change in land cover. Additionally, the characteristics of land cover (forest, agriculture, bare soil, neighboring cover etc.) mutually influence the land use. We estimate a model where land values and land use are jointly determined while land use and land cover interact recursively. We use historical data, probability estimation and land use simulation to generate panel data of future patterns of land value, land use and land cover at the outer edge of the Tel Aviv metropolitan area for the period 1995–2023. The modeling system combines panel 2SLS (2-stage least squares) estimation to investigate land value-land use interactions. Land use-land cover dynamics are estimated using panel MNL (multi-nomial logit) estimation. Results of simple simulations of the probability of land cover change are presented. When coupled with an appropriate biodiversity model, this system could potentially be extended to forecasting other aspects of the environmental stress of metropolitan expansion, for example impacts on vegetation or ecological dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192.

    Article  Google Scholar 

  • Alberti, M. (2008). Advances in urban ecology: Integrating human and ecological processes in urban ecosystems. New York: Springer.

    Book  Google Scholar 

  • Alberti, M., & Waddell, P. (2000). An integrated urban development and ecological simulation model. Integrated Assessment, 1, 215–227.

    Article  Google Scholar 

  • Baltagi, B. H. (2008). Econometric analysis of panel data. London: Wiley.

    Google Scholar 

  • Felsenstein, D., & Ashbel, E. (2010). Simultaneous modeling of developer behavior and land prices in UrbanSim. Journal of Transportation and Land Use, 3(2), 107–127.

    Google Scholar 

  • Felsenstein, D., Ashbel, E., & Ben-Nun, A. (2007). Microsimulation of metropolitan employment deconcentration. In E. Koomen, J. Stillwell, A. Bakema, & H. J. Scholten (Eds.), Modelling land use change: Progress and applications, volume 90 of GeoJournal library (pp. 199–218). Netherlands: Springer.

    Chapter  Google Scholar 

  • Haan, P., & Uhlendorff, A. (2006). Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood. The STATA Journal, 6(2), 229–245.

    Google Scholar 

  • Hepinstall, J. A., Alberti, M., & Marzluff, J. M. (2008). Predicting land cover change and avian community responses in rapidly urbanizing environments. Landscape Ecology, 23, 1257–1276.

    Article  Google Scholar 

  • Ihlanfeldt, K. R. (2007). The effect of land use regulation on housing and land prices. Journal of Urban Economics, 61, 420–435.

    Article  Google Scholar 

  • Irwin, E. G. (2010). New direction for urban economic models of land use change: Incorporating spatial dynamics and heterogeneity. Journal of Regional Science, 50(1), 65–91.

    Article  Google Scholar 

  • Irwin, E., Jayaprakash, C., & Munroe, D. K. (2009). Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecology, 24, 1223–1236.

    Article  Google Scholar 

  • Lee, M. J. (2013). Practical panel conditional logit estimators for binary, Ordered discrete and multinomial responses. The Oxford handbook of panel data econometrics. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Levin, N., Harari-Kremer R., & Carmel, Y. (2011). Remote sensing of Israel’s natural habitats, Unpublished Report for the Israeli Nature and Parks Authority, Jerusalem.

    Google Scholar 

  • Lopez, A., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning, 55, 271–285.

    Article  Google Scholar 

  • Mayer, C. J., & Somerville, C. T. (2000). Land use regulation and new construction. Regional Science and Urban Economics, 30, 639–662.

    Article  Google Scholar 

  • Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffman, M., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93, 314–337.

    Article  Google Scholar 

  • Ravetz, J., Fertner, C., & Nielsen, T. (2013). The dynamics of peri-urbanization. In K. Nilsson, S. Pauleit, S. Bell, C. Aalbers, & T. Nielsen (Eds.), Peri-urban futures: Scenarios and models of land use change in Europe (pp. 13–44). Heidelberg: Springer.

    Chapter  Google Scholar 

  • van Schrojenstein Lantman, J., Verburg, P., Bregt, A., & Geertman, S. (2011). Core principles and concepts in land use modelling: A literature review. In E. Koomen & J. Borsboom-van Beurden (Eds.), Land use modelling in planning practice (pp. 35–57). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Verburg, P. (2006). Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21, 1171–1183.

    Article  Google Scholar 

  • Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modeling: Current practice and research priorities. GeoJournal, 61, 309–324.

    Article  Google Scholar 

  • Waddell, P., & Ulfarson, G. F. (2003). Introduction to urban simulation: Design and development of operational models. In P. Stopher, K. Button, K. Kingsley, & D. Hensher (Eds.), Handbook in transport, vol 5. Transport geography and spatial systems. New York: Pergamon Press.

    Google Scholar 

Download references

Acknowledgements

Thanks to Dai Xieer for assistance with the estimation.

This research is partially based on work done in the SECOA (Solutions for Environmental Contrasts in Coastal Areas) research project funded by the European Commission Seventh Framework Programme 2007–2013 under Grant Agreement No 244251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Felsenstein .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Writing Eqs. 5 and 6 in matrix form:

$$ {U}_t={\mathrm{AA}}_N{U}_{t-1}+\lambda W{U}_{t-1}+\delta {V}_t+K{\mathrm{XX}}_t+{v}_t $$
$$ {C}_t={\Gamma}_M{C}_{t-1}+\alpha {U}_{t-1}+\lambda {U}^{*}+K{\mathrm{XX}}_t+{u}_t $$

where: A N, Γ M are probability transition matrices for LU and LC.

Using the time series lag operator (L) which operates on an element, in order to produce the previous element, we solve for Ut and Ut−1:

$$ \left(I-\boldsymbol{\varGamma} L\right){C}_t=B{U}_{t-1}+{u}_t $$
(9)
$$ \left(I-\boldsymbol{A}L\right){U}_t={v}_t $$
(10)
$$ {U}_t={\left(I-\boldsymbol{A}L\right)}^{-1}{v}_t $$
(11)
$$ \begin{array}{l}{\left(I-\boldsymbol{A}L\right)}^{-1}=I+\boldsymbol{A}L+{\boldsymbol{A}}^2{L}^2+\dots \\ {}{A}^n\to 0\ n\to \infty \end{array} $$
(12)
$$ {U}_{t-1}={v}_{t-1}\boldsymbol{A}{v}_{t-2}+{\boldsymbol{A}}^2{v}_{t-3}+\dots $$
(13)

Substituting for U t−1 in Eq. 9 and re-arranging:

$$ {C}_t={\left(I-\boldsymbol{\varGamma} L\right)}^{-1}B\left(\ {v}_{t-1}\boldsymbol{A}{v}_{t-2}+{\boldsymbol{A}}^2{v}_{t-3}+\dots.\right) $$

The inverse of the polynomial is:

$$ {\left(I-\boldsymbol{\varGamma} L\right)}^{-1}=I+\boldsymbol{\varGamma} L+{\boldsymbol{\varGamma}}^2{L}^2+{\boldsymbol{\varGamma}}^3{L}^3+\dots $$

Appendix 2: Probability Estimation of Land Cover Data

We use MNL regression for historic (2002) data to create log odds of land cover (LC) e change (from bare soil, forests, orchards, fields to built areas). Independent variables are: LC for 1995 (lc95), the most frequent LC in the neighboring cells in 19955 (neigh95), distance from 2 digit highways (2dgt), distance from 1 digit highways (1dgt), distance from metropolitan CBD (core), parks area (prk), 1995 residential land value (lv95), 1995 commercial square feet (comm95), 1995 industrial square feet (ind95), 1995 governmental square feet (gov95), 1995 number of residential units (res95). Non –significant variables are excluded and the regression re-estimated with 0.2445 misclassification rate which is equal to 51.1 % accuracy. Coefficient values are as follows:

Log odds for

Intercept

2dgt

1dgt

core

prk

Lc95[2]

2/6

1.06300627

0.02128593

−0.0212716

−0.0000239

−0.000018435

1.39784825

3/6

1.6741873

0.0547843

−0.0546622

−0.000070779

−0.0001232

0.00525623

4/6

0.01532415

0.01373619

−0.0138219

−0.0000009686

−0.0001346

−0.8704572

5/6

0.11464507

0.02095321

−0.021061

−0.0000082171

−0.000061941

−0.0847443

Log odds for

Lc95[3]

Lc95[4]

Lc95[5]

neigh95[2]

neigh95[3]

2/6

1.3162059

−0.5565036

−0.9872424

0.81029937

0.24571899

3/6

2.21462143

0.91567457

−0.8596639

−0.1341568

1.35462331

4/6

−0.6881597

3.05639013

−0.1230151

−0.2588099

−1.0215386

5/6

−1.5210677

0.23063331

2.64963015

−0.0652665

−1.1603799

Log odds for

neigh95[4]

neigh95[5]

lv95

res95

2/6

−0.0369579

−0.4688555

−0.0000000056334

−0.0053964

3/6

0.33465383

−0.9959705

−0.0000038221

−0.0217897

4/6

1.39302637

0.11419243

−0.0000018486

−0.0196984

5/6

0.19326558

1.08702141

−0.0000033074

−0.016155

These parameters are then tested by using the 2002 LC data and 2002 land use model outputs as independent variables. The predictions of this regression generate 53.48 % accuracy when compared with actual 2009 LC data. After each round, the outputs of the previous round become the t-1 values for a new round, i.e. LC value calculated in round t becomes LC data for round t + 1. This is repeated for each time period with time lags of t = 7.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felsenstein, D., Lichter, M., Ashbel, E., Grinberger, A.Y. (2013). Land Use-Land Cover Dynamics at the Metropolitan Fringe. In: Malkinson, D., Czamanski, D., Benenson, I. (eds) Modeling of Land-Use and Ecological Dynamics. Cities and Nature. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40199-2_8

Download citation

Publish with us

Policies and ethics