Skip to main content

Epigenetic, Genetic, and Acquired Regulation of Cav3 T-Type Calcium Channel Expression and Function in Tumor Growth and Progression

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

T-type Ca2+ channels are a specific channel family controlling proliferation, differentiation, angiogenesis, and invasion of tumor cells. Molecular biology has identified three main subfamilies of α1 subunits, called Cav1, Cav2, and Cav3. The third subfamily contains three members, called T-types: Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3 (α1I). The Cav3 channels are expressed in normal tissues throughout the body as well as in different types of tumors such as breast, glioma/neuroblastomas, colorectal, gastric, hepatic and prostate tumors, T cell leukemia, retinoblastoma (RB), and phaeochromocytoma. It has been shown that increased functional expression of Cav3 channels plays a role in abnormal proliferation of tumor cells. In addition, a crosstalk between the Rho-ROCK pathway and Cav3 channels in tumor cell migration and invasion has been demonstrated. Cav3 expression is strictly regulated during cell differentiation and tumor formation. Inactivation of Cav3 genes by aberrant methylation plays a major role in tumor development and progression. In this regard, since hypermethylation of CpG islands is thought to be the major epigenetic modification repressing gene transcription, Cav3.1 has been regarded as a candidate tumor suppressor gene. In contrast, CpG sites in the Cav3.2 gene were hypomethylated, and thus this gene is considered to be a candidate oncogene, regulated by methylation. Finally, Cav3 functional diversity may also result from the generation of splice variants. Alterations in the expression of different splice variants, and their expression during tumor development and progression, may trigger variety in Ca2+ signaling, which may contribute to the generation of more aggressive tumor clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson PA (1999) Neuroendocrine differentiation in prostatic carcinoma. Prostate 39(2):135–148

    Article  PubMed  CAS  Google Scholar 

  • Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90(24):11995–11999

    Article  PubMed  CAS  Google Scholar 

  • Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62(3):503–514

    Article  PubMed  CAS  Google Scholar 

  • Asaga S, Ueda M, Jinno H, Kikuchi K, Itano O, Ikeda T, Kitajima M (2006) Identification of a new breast cancer-related gene by restriction landmark genomic scanning. Anticancer Res 26(1A):35–42

    Google Scholar 

  • Assandri R, Egger M, Gassmann M, Niggli E, Bauer C, Forster I, Gorlach A (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J Physiol 516(Pt 2):343–352

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium - a life and death signal. Nature 395(6703):645–648

    Article  PubMed  CAS  Google Scholar 

  • Bertolesi GE, Jollimore CA, Shi C, Elbaum L, Denovan-Wright EM, Barnes S, Kelly ME (2003) Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J Neurosci 17(9):1802–1810

    Article  PubMed  Google Scholar 

  • Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S, Kelly ME (2002) The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol 62(2):210–219

    Article  PubMed  CAS  Google Scholar 

  • Bertolesi GE, Walia Da Silva R, Jollimore CA, Shi C, Barnes S, Kelly ME (2006) Ca(v)3.1 splice variant expression during neuronal differentiation of Y-79 retinoblastoma cells. Neuroscience 141(1):259–268

    Google Scholar 

  • Blaheta RA, Hailer NP, Brude N, Wittig B, Oppermann E, Leckel K, Harder S, Scholz M, Weber S, Encke A, Markus BH (1998) Novel mode of action of the calcium antagonist mibefradil (Ro 40–5967): potent immunosuppression by inhibition of T-cell infiltration through allogeneic endothelium. Immunology 94(2):213–220

    Article  PubMed  CAS  Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76(3):839–885

    PubMed  CAS  Google Scholar 

  • Burchardt T, Burchardt M, Chen MW, Cao Y, de la Taille A, Shabsigh A, Hayek O, Dorai T, Buttyan R (1999) Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol 162(5):1800–1805

    Article  PubMed  CAS  Google Scholar 

  • Castro M, Grau L, Puerta P, Gimenez L, Venditti J, Quadrelli S, Sánchez-Carbayo M (2010) Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in lung cancer. J Transl Med 8:86–97

    Article  PubMed  Google Scholar 

  • Chemin J, Monteil A, Briquaire C, Richard S, Perez-Reyes E, Nargeot J, Lory P (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 478(1–2):166–172

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Monteil A, Dubel S, Nargeot J, Lory P (2001) The alpha1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108-15 cells. Eur J Neurosci 14(10):1678–1686

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Nargeot J, Lory P (2002) Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J Neurosci 22(16):6856–6862

    PubMed  CAS  Google Scholar 

  • Chemin J, Nargeot J, Lory P (2004) Ca(v)3.2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. Neuroreport 15(4):671–675

    Article  PubMed  CAS  Google Scholar 

  • De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A 93(14):7149–7153

    Article  PubMed  Google Scholar 

  • Del Toro R, Levitsky KL, pez-Barneo JL, Chiara MD (2003) Induction of T-type Calcium Channel Gene Expression by Chronic Hypoxia. J Biol Chem 278(25):22316–22324

    Article  PubMed  Google Scholar 

  • Díaz-Lezama N, Hernández-Elvira M, Sandoval A, Monroy A, Felix R, Monjaraz E (2010) Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells. Biochem Biophys Res Commun 403(1):24–29

    Article  PubMed  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413

    Article  PubMed  CAS  Google Scholar 

  • Estacion M, Mordan LJ (1997) PDGF-stimulated calcium influx changes during in vitro cell transformation. Cell Signalling 9(5):363–366

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    Article  PubMed  CAS  Google Scholar 

  • Foster SA, Wong DJ, Barrett MT, Galloway DA (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18(4):1793–1801

    PubMed  CAS  Google Scholar 

  • Gackière F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoï-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) Cav3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283(15):10162–10173

    Article  PubMed  Google Scholar 

  • Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA (1999) Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res 59(7 Suppl):1731s–1735s

    PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492

    Article  PubMed  CAS  Google Scholar 

  • Giannone G, Ronde P, Gaire M, Haiech J, Takeda K (2002) Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J Biol Chem 277(29):26364–26371

    Article  PubMed  CAS  Google Scholar 

  • Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, Harper J, Brooks G, Heady T, Macdonald TL (2004) The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium 36(6):489–497

    Article  PubMed  CAS  Google Scholar 

  • Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP (2003) Expression of recombinant calcium channels support secretion in a mouse pheochromocytoma cell line. J Neurophysiol 90(4):2325–2333

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60(4):1002–1008

    PubMed  CAS  Google Scholar 

  • Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O’Connor T, Ward R (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122(5):1376–1387

    Article  PubMed  CAS  Google Scholar 

  • Hirooka K, Bertolesi GE, Kelly ME, Denovan-Wright EM, Sun X, Hamid J, Zamponi GW, Juhasz AE, Haynes LW, Barnes S (2002) T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neurophysiol 88(1):196–205

    PubMed  CAS  Google Scholar 

  • Hofmann F, Lacinova L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    Article  PubMed  CAS  Google Scholar 

  • Huang JB, Kindzelskii AL, Clark AJ, Petty HR (2004) Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res 64(7):2482–2489

    Article  PubMed  CAS  Google Scholar 

  • Iftinca M, Hamid J, Chen L, Varela D, Tadayonnejad R, Altier C, Turner RW, Zamponi GW (2007) Regulation of T-type calcium channels by Rho-associated kinase. Nat Neurosci 10(7):854–860

    Article  PubMed  CAS  Google Scholar 

  • Jass JR (2005) Serrated adenoma of the colorectum and the DNA-methylator phenotype. Nat Clin Pract Oncol 2(8):398–405

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Ohnishi M, Nosho K, Suemoto Y, Kirkner GJ, Meyerhardt JA, Fuchs CS, Ogino S (2008) CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci. Mod Pathol 21(3):245–255

    Google Scholar 

  • Klugbauer N, Marais E, Lacinova L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflugers Arch 437(5):710–715

    Article  PubMed  CAS  Google Scholar 

  • Kuga T, Kobayashi S, Hirakawa Y, Kanaide H, Takeshita A (1996) Cell cycle–dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 79(1):14–19

    Article  PubMed  CAS  Google Scholar 

  • Kunert-Radek J, Stepien H, Radek A, Lyson K, Pawlikowski M (1989) Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro. Acta Neurol Scand 79(2):166–169

    Article  PubMed  CAS  Google Scholar 

  • Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119

    Article  PubMed  Google Scholar 

  • Lesouhaitier O, Chiappe A, Rossier MF (2001) Aldosterone increases T-type calcium currents in human adrenocarcinoma (H295R) cells by inducing channel expression. Endocrinology 142(10):4320–4330

    Article  PubMed  CAS  Google Scholar 

  • Leuranguer V, Bourinet E, Lory P, Nargeot J (1998) Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology 37(6):701–708

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhang SL, Wang N, Zhang BB, Li M (2011) Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest 29(5):339–346

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, Zhuang H (2009) A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep 22(5):1229–1235

    PubMed  CAS  Google Scholar 

  • Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40(2):135–146

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D, Wu S (2008) T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 43(1):49–58

    Article  PubMed  CAS  Google Scholar 

  • Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376

    PubMed  CAS  Google Scholar 

  • Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N (2002) Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277(13):10824–10833

    Article  PubMed  CAS  Google Scholar 

  • Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA (2000) mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther 295(1):302–308

    PubMed  CAS  Google Scholar 

  • Melki JR, Vincent PC, Clark SJ (1999) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59(15):3730–3740

    PubMed  CAS  Google Scholar 

  • Mittman S, Guo J, Agnew WS (1999) Structure and alternative splicing of the gene encoding alpha1G, a human brain T calcium channel alpha1 subunit. Neurosci Lett 274(3):143–146

    Article  PubMed  CAS  Google Scholar 

  • Monteil A, Chemin J, Leuranguer V, Altier C, Mennessier G, Bourinet E, Lory P, Nargeot J (2000) Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem 275(22):16530–16535

    Article  PubMed  CAS  Google Scholar 

  • Nebe B, Holzhausen C, Rychly J, Urbaszek W (2002) Impaired mechanisms of leukocyte adhesion in vitro by the calcium channel antagonist mibefradil. Cardiovasc Drugs Ther 16(3):183–193

    Article  PubMed  CAS  Google Scholar 

  • Newsholme P, Adogu AA, Soos MA, Hales CN (1993) Complement induced Ca21 influx in cultured fibroblasts is decreased by the calcium-channel antagonist nifedipine or by some bivalent inorganic cations. Biochem J 295(Pt3):773–779

    Google Scholar 

  • Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9(3):305–314

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo T, Yamazaki Y (2012) T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol 41(1):267–275

    PubMed  CAS  Google Scholar 

  • Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37(2):105–119

    Article  PubMed  CAS  Google Scholar 

  • Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40(2):253–259

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH (2006) Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 577(Pt 2):513–523

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (1999) Three for T: molecular analysis of the low voltage-activated calcium channel family. Cell Mol Life Sci 56(7–8):660–669

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Cedar H (1994) DNA methylation and genomic imprinting. Cell 77(4):473–476

    CAS  Google Scholar 

  • Ronde P, Giannone G, Gerasymova I, Stoeckel H, Takeda K, Haiech J (2000) Mechanism of calcium oscillations in migrating human astrocytoma cells. Biochim Biophys Acta 1498(2–3):273–280

    Article  PubMed  CAS  Google Scholar 

  • Santoni G, Santoni M, Nabissi M (2012) Functional role of T-type calcium channels in tumour growth and progression: prospective in cancer therapy. Br J Pharmacol 166(4):1244–1246

    Article  PubMed  CAS  Google Scholar 

  • Schmutte C, Jones PA (1998) Involvement of DNA methylation in human carcinogenesis. Biol Chem 379(10):377–388

    PubMed  CAS  Google Scholar 

  • Shimizu T, Ohta Y, Ozawa H, Matsushima H, Takeda K (2000) Papaverine combined with prostaglandin E2 synergistically induces neuron-like morphological changes and decrease of malignancy in human prostatic cancer LNCaP cells. Anticancer Res 20(2A):761–767

    Google Scholar 

  • Seigel GM (1999) The golden age of retinal cell culture. Mol Vis 5:4

    PubMed  CAS  Google Scholar 

  • Tang C, Presser F, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Science 240(4849):213–215

    Article  PubMed  CAS  Google Scholar 

  • Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 267(1):116–124

    Article  PubMed  CAS  Google Scholar 

  • Taylor SC, Peers C (1999) Chronic hypoxia enhances the secretory response of rat phaeochromocytoma cells to acute hypoxia. J Physiol 514(Pt 2):483–491

    Article  PubMed  CAS  Google Scholar 

  • Teodorczyk M, Martin-Villalba A (2009) Sensing Invasion: Cell Surface Receptors. Driving Spreading of Glioblastoma. J Cell Physiol 222(1):1–10

    Article  Google Scholar 

  • Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-PJ (1999a) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, Baylin SB, Issa JP (1999b) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 59(21):5438–5442

    PubMed  CAS  Google Scholar 

  • Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999c) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5’ CpG island in human tumors. Cancer Res 59:4535–4541

    PubMed  CAS  Google Scholar 

  • Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9(2):219–228

    PubMed  CAS  Google Scholar 

  • Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, Goggins M (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60(7):1835–1839

    PubMed  CAS  Google Scholar 

  • Ueki T, Walter KM, Skinner H, Jaffee E, Hruban RH, Goggins M (2002) Aberrant CpG island methylation in cancer cell lines arises in the primary cancers from which they were derived. Oncogene 21(13):2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wang YQ, Brooks G, Zhu CB, Yuan WZ, Li YQ, Wu XS (2002) Functional analysis of the human T-type calcium channel alpha 1H subunit gene in cellular proliferation. Yi Chuan Xue Bao 29(8):659–665

    PubMed  CAS  Google Scholar 

  • Yoshida M, Nosaka K, Yasunaga J, Nishikata I, Morishita K, Matsuoka M (2004) Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood 103(7):2753–2760

    Article  PubMed  CAS  Google Scholar 

  • Yunker AM, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW (2003) Immunological characterization of T-type voltage-dependent calcium channel Cav3.1 (alpha 1G) and Cav3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development. Neuroscience 117(2):321–335

    Article  PubMed  CAS  Google Scholar 

  • Zelivianski S, Verni M, Moore C, Kondrikov D, Taylor R, Lin MF (2001) Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype. Biochim Biophys Acta 1539(1–2):28–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J (2012) Inhibition of T-type Ca²+ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 166(4):1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Zhu WH, Conforti L, Czyzyk-Krzeska MF, Millhorn DE (1996) Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current. Am J Physiol 271(2 Pt 1):C658–C665

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Santoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morelli, M.B. et al. (2014). Epigenetic, Genetic, and Acquired Regulation of Cav3 T-Type Calcium Channel Expression and Function in Tumor Growth and Progression. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_15

Download citation

Publish with us

Policies and ethics