Skip to main content

Polynomial Threshold Functions and Boolean Threshold Circuits

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

We initiate a comprehensive study of the complexity of computing Boolean functions by polynomial threshold functions (PTFs) on general Boolean domains. A typical example of a general Boolean domain is {1,2}n. We are mainly interested in the length (the number of monomials) of PTFs, with their degree and weight being of secondary interest.

First we motivate the study of PTFs over the {1,2}n domain by showing their close relation to depth two threshold circuits. In particular we show that PTFs of polynomial length and polynomial degree compute exactly the functions computed by polynomial size THR ∘ MAJ circuits. We note that known lower bounds for THR ∘ MAJ circuits extends to the likely strictly stronger model of PTFs. We also show that a “max-plus” version of PTFs are related to AC 0 ∘ THR circuits.

We exploit this connection to gain a better understanding of threshold circuits. In particular, we show that (super-logarithmic) lower bounds for 3-player randomized communication protocols with unbounded error would yield (super-polynomial) size lower bounds for THR ∘ THR circuits.

Finally, having thus motivated the model, we initiate structural studies of PTFs. These include relationships between weight and degree of PTFs, and a degree lower bound for PTFs of constant length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, S., Bhatnagar, N., Gopalan, P., Lipton, R.J.: Polynomials that sign represent parity and Descartes’ rule of signs. Computat. Complex. 17(3), 377–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beigel, R.: The polynomial method in circuit complexity. In: CCC 1993, pp. 82–95. IEEE Computer Society Press (1993)

    Google Scholar 

  3. Beigel, R.: Perceptrons, PP, and the polynomial hierarchy. Comput. Complex. 4(4), 339–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruck, J., Smolensky, R.: Polynomial threshold functions, AC0 functions, and spectral norms. SIAM J. Comput. 21(1), 33–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhrman, H., Vereshchagin, N.K., de Wolf, R.: On computation and communication with small bias. In: CCC 2007, pp. 24–32 (2007)

    Google Scholar 

  6. Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer (2010)

    Google Scholar 

  7. Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci. 65(4), 612–625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations between communication complexity, linear arrangements, and computational complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Goldmann, M.: On the power of a threshold gate at the top. Inform. Process. Lett. 63(6), 287–293 (1997)

    Article  MathSciNet  Google Scholar 

  10. Goldmann, M., Håstad, J., Razborov, A.A.: Majority gates vs. general weighted threshold gates. Comput. Complex. 2(4), 277–300 (1992)

    Article  MATH  Google Scholar 

  11. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)

    Article  MATH  Google Scholar 

  12. Hansen, K.A., Miltersen, P.B.: Some meet-in-the-middle circuit lower bounds. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 334–345. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hansen, K.A., Podolskii, V.V.: Exact threshold circuits. In: CCC 2010, pp. 270–279. IEEE Computer Society (2010)

    Google Scholar 

  14. Hansen, K.A., Podolskii, V.V.: Polynomial threshold functions and boolean threshold circuits. ECCC TR13-021 (2013)

    Google Scholar 

  15. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Comput. Complex. 1, 113–129 (1991)

    Article  MATH  Google Scholar 

  16. Klivans, A.R., O’Donnell, R., Servedio, R.A.: Learning intersections and thresholds of halfspaces. J. Comput. Syst. Sci. 68(4), 808–840 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{{\widetilde{O}}(n^{1/3})}\). J. Comput. Syst. Sci. 68(2), 303–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krause, M., Pudlák, P.: On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci. 174(1–2), 137–156 (1997)

    Article  MATH  Google Scholar 

  19. Krause, M., Pudlák, P.: Computing boolean functions by polynomials and threshold circuits. Comput. Complex. 7(4), 346–370 (1998)

    Article  MATH  Google Scholar 

  20. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press (1969)

    Google Scholar 

  21. Muroga, S.: Threshold Logic and its Applications. John Wiley & Sons, Inc. (1971)

    Google Scholar 

  22. Muroga, S., Toda, I., Takasu, S.: Theory of majority decision elements. Journal of the Franklin Institute 271, 376–418 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nisan, N.: The communication complexity of threshold gates. In: Miklós, D., Szönyi, T., Sós, V.T. (ed.) Combinatorics, Paul Erdős is Eighty, Mathematical Studies, vol. 1, pp. 301–315. Bolyai Society (1993)

    Google Scholar 

  24. Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst. Sci. 33(1), 106–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Razborov, A., Wigderson, A.: n Ω(logn) lower bounds on the size of depth-3 threshold circuits with AND gates at the bottom. Inf. Proc. Lett. 45(6), 303–307 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Razborov, A.A., Sherstov, A.A.: The sign-rank of AC0. SIAM J. Comput. 39(5), 1833–1855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saks, M.E.: Slicing the hypercube. In: Walker, K. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 187. Cambridge University Press (1993)

    Google Scholar 

  28. Sherstov, A.A.: Communication lower bounds using dual polynomials. Bulletin of the EATCS 95, 59–93 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Sherstov, A.A.: Separating AC0 from depth-2 majority circuits. SIAM J. Comput. 38(6), 2113–2129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Speyer, D., Sturmfels, B.: Tropical Mathematics. ArXiv math/0408099 (2004), http://arxiv.org/abs/math/0408099

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, K.A., Podolskii, V.V. (2013). Polynomial Threshold Functions and Boolean Threshold Circuits. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics