Skip to main content

Brain SPECT in the Impulsive-Aggressive Dog

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

Dogs can be used as research models in order to contribute to a better understanding of human neuropsychiatric disorders and to explore treatment options. In general, smaller laboratory animals, most often mice and rats, have been extensively used. Nevertheless, the implementation of larger animal (e.g. dogs) models has several important advantages. Their larger brain size omits the need for dedicated equipment (micro-PET or micro-SPECT) and the larger portion of the frontal cortex (crucial to behaviour regulation) in particular allows superior investigation of this area. They can further be used to investigate normal physiology and interaction of several neurotransmitter systems and the effects of drugs on brain function and chemistry. In this regard, they can also be used to obtain information on the pharmacokinetics and pharmacodynamics of newly developed drugs and the dosage at which maximal response and least side effects occur. Finally, natural animal behavioural models of disorders can be used to enlighten the biological base of several human neuropsychiatric disorders. In this chapter, an overview will be given on the use of functional brain imaging in dogs suffering from impulsive aggression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams B et al (2000) The canine as a model of human cognitive aging: recent developments. Prog Neuropsychopharmacol Biol Psychiatry 24:675–692

    Article  PubMed  CAS  Google Scholar 

  • Adriaens A et al (2012) The Influence of Morphine on Cerebral 5-HT2A Availability in Dogs: a SPECT study. J Nucl Med 53(12):1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Arango V, Ernsberger P, Marzuk PM (1990) Autoradiographic demonstration of increased serotonin 5HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry 47:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Arora RC, Meltzer HY (1989) Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in the frontal cortex of suicide victims and control subjects. Am J Psychiatry 146:730–736

    PubMed  CAS  Google Scholar 

  • Asberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 33:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Badino P et al (2004) Modifications of serotonergic and adrenergic receptor concentrations in the brain of aggressive Canis familiaris. Comp Biochem Physiol A Mol Integr Physiol 139:343–350

    Article  PubMed  CAS  Google Scholar 

  • Baeken C et al (1998) 123I-5-I-R91150, a new single-photon emission tomography ligand for 5-HT2A receptors: influence of age and gender in healthy subjects. Eur J Nucl Med 25:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM et al (2002) Serotonin 2A receptor T102C polymorphism and impaired impulse control. Am J Med Genet 114:336–339

    Article  PubMed  Google Scholar 

  • Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans–man and his best friend share more than companionship. Chromosome Res 16:145–154

    Article  PubMed  CAS  Google Scholar 

  • Busatto GF et al (1997) Initial evaluation of 123I-5-I-R91150, a selective 5-HT2A ligand for single photon emission tomography in healthy subjects. Eur J Nucl Med 24:119–124

    Article  PubMed  CAS  Google Scholar 

  • Casteleyn C et al (2013) New therapeutic targets in veterinary oncology: Man and dog definitely are best friends. Vet J 195(1):6–7

    Article  PubMed  Google Scholar 

  • Coccaro E et al (1997) Impulsive aggression in personality disorder correlates with platelet 5-HT2A receptor binding. Neuropsychopharmacology 16:211–216

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D (2010) Genetics: pet project. Nature 466:1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Roiser JP (2012) Dopamine, serotonin and impulsivity. Neuroscience 215:42–58

    Article  PubMed  CAS  Google Scholar 

  • Dodman NH et al (1996) Use of fluoxetine to treat dominance aggression in dogs. J Am Vet Med Assoc 209:1585–1587

    PubMed  CAS  Google Scholar 

  • Fairbanks L et al (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24:370–378

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW (1996) The influence of fluoxetine on aggressive behavior. Neuropsychopharmacology 14:77–81

    Article  PubMed  CAS  Google Scholar 

  • Fuster J (1997) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Giegling I et al (2006) Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene. J Affect Disord 96:75–81

    Article  PubMed  CAS  Google Scholar 

  • Goodloe L (1996) Issues in description and measurements of temperament in companion dogs. In: Voith V, Borchelt P (eds) Readings in companion animal behaviour. Trenton, New Jersey

    Google Scholar 

  • Hassoun W et al (2003) PET study of the (11C)raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med 30:141–148

    Article  CAS  Google Scholar 

  • Haug LI (2008) Canine aggression toward unfamiliar people and dogs. Vet Clin North Am Small Anim Pract 38:1023–1041

    Article  PubMed  Google Scholar 

  • Higley DE et al (1996) Excessive mortality in young free-ranging male nonhuman primates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations. Arch Gen Psychiatry 53:537–543

    Article  PubMed  CAS  Google Scholar 

  • Houpt KA, Honig SU, Reisner IR (1996) Breaking the human-companion animal bond. J Am Vet Med Assoc 208:1653–1659

    PubMed  CAS  Google Scholar 

  • Hsu Y, Serpell JA (2003) Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J Am Vet Med Assoc 223:1293–1300

    Article  PubMed  Google Scholar 

  • Joseph R (1996) The limbic system. In: Neuropsychiatry, neuropsychology, and clinical neuroscience. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kakiuchi T et al (2000) Age related reduction of {11C} MDL 100,907 binding to central 5-HT2A receptors: PET study on the conscious monkey brain. Brain Res 883:135–142

    Article  PubMed  CAS  Google Scholar 

  • Katagiri H et al (2001) Modulation of serotonin2A receptor function in rats after repeated treatment with dexamethasone and L-type calcium channel antagonist nimodipine. Prog Neuropsychopharmacol Biol Psychiatry 25:1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Kavoussi R, Armstead P, Coccaro E (1997) The neurobiology of impulsive aggression. Psychiatr Clin North Am 20:395–403

    Article  PubMed  CAS  Google Scholar 

  • Kersemans V, De Spiegeleer B, Mertens J, Slegers G (2006) Influence of sedation and data acquisition method on tracer uptake in animal models: [123I]-2-iodo-l-phenylalanine in pentobarbital-sedated tumor-bearing athymic mice. Nucl Med Biol 33:119–123

    Article  PubMed  CAS  Google Scholar 

  • Langley RL (2009) Human fatalities resulting from dog attacks in the United States, 1979–2005. Wilderness Environ Med 20:19–25

    Article  PubMed  Google Scholar 

  • Lee YA et al (2012) Effects of various anesthetic protocols on 18F-flurodeoxyglucose uptake into the brains and hearts of normal miniature pigs (Sus scrofa domestica). J Am Assoc Lab Anim Sci 51:246–252

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leon M et al (2012) Assessment of serotonin in serum, plasma, and platelets of aggressive dogs. J Vet Behav Clin Appl Res 7:348–352

    Article  Google Scholar 

  • Marder A, Voith V (1996) Canine aggression evaluation. In: Voith V, Borchelt P (eds) Readings in companion animal behaviour. Trenton, New Jersey

    Google Scholar 

  • Martle V et al (2013) High resolution micro-SPECT to evaluate the regional brain perfusion in the adult Beagle dog. Res Vet Sci 94(3):701–706

    Article  PubMed  CAS  Google Scholar 

  • Mehlman PT et al (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in non human primates. Am J Psychiatry 151:1485–1491

    PubMed  CAS  Google Scholar 

  • Meltzer CC et al (1998) Reduced binding of {18F} altanserin to serotonin type 2A receptors in aging: persistence of effect after partial volume correction. Brain Res 813:167–171

    Article  PubMed  CAS  Google Scholar 

  • Mertens J et al (1994) Radiosynthesis of a new radio-iodinated ligand for serotonin-5HT(2)-receptors, a promising tracer for gamma-emission tomography. J Lab Comp Radiopharm 34:795–806

    Article  CAS  Google Scholar 

  • Meyer JH et al (2001) The effects of paroxetine on 5-HT2A receptors in depression: an [18F]setoperone PET imaging study. Am J Psychiatry 158:78–85

    Article  PubMed  CAS  Google Scholar 

  • Moresco RM et al (2007) Fluvoxamine treatment and D2 receptors: a pet study on OCD drug-naive patients. Neuropsychopharmacology 32:197–205

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff C (2005) Use of atypical antipsychotics in refractory depression and anxiety. J Clin Psychiatry 66(Suppl 8):13–21

    PubMed  CAS  Google Scholar 

  • Nomura M et al (2006) Involvement of a polymorphism in the 5-HT2A receptor gene in impulsive behavior. Psychopharmacology (Berl) 187:30–35

    Article  CAS  Google Scholar 

  • Oquendo MA, Mann JJ (2000) The biology of impulsivity and suicidality. Psychiatr Clin North Am 23:11–25

    Article  PubMed  CAS  Google Scholar 

  • Overall K (1997) Canine aggression. In: Overall K (ed) Clinical behavioral medicine for small animals. Mosby, St Louis

    Google Scholar 

  • Overall K (2000) Natural animal models of human psychiatric conditions: assessment of mechanism and validity. Prog Neuropsychopharmacol Biol Psychiatry 24:727–776

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2002a) Effects of aging on brain perfusion and serotonin-2A receptor binding in the normal canine brain measured with single photon emission tomography. Prog Neuropsychopharmacol Biol Psychiatry 26:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2002b) Biodistribution and displacement studies of the selective 5-HT2A receptor antagonist 123I-5-I-R91150 in the normal dog. Nucl Med Commun 23:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2003) Estimates of regional cerebral blood flow and 5-HT2A receptor density in impulsive, aggressive dogs with 99mTc-ECD and 123I-5-I-R91150. Eur J Nucl Med Mol Imaging 30:1538–1546

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2005) The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with 123I-5-I-R91150 SPECT. Eur J Nucl Med Mol Imaging 32:708–716

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2006) Serotonin transporter and dopamine transporter imaging in the canine brain. Nucl Med Biol 33:907–913

    Article  PubMed  CAS  Google Scholar 

  • Peremans K et al (2008) Evaluation of serotonin-2A receptor occupancy with 123I-5-I-R91150 and single-photon emission tomography before and after low-dose pipamperone administration in the canine brain. Nucl Med Commun 29:724–729

    Article  PubMed  CAS  Google Scholar 

  • Popova NK, Voitenko NN, Trut LN (1976) Changes in the content of serotonin and 5-hydroxyindoleacetic acid in the brain in the selection of silver foxes according to behavior. Neurosci Behav Physiol 7:72–74

    Article  PubMed  CAS  Google Scholar 

  • Popova NK et al (1991a) Serotonin metabolism and serotonergic receptors in Norway rats selected for low aggressiveness towards man. Aggress Behav 17:207–213

    Article  CAS  Google Scholar 

  • Popova NK et al (1991b) Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes. Pharmacol Biochem Behav 40:751–756

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Ryland DH, Kriete M (1992) Drug treatment of canine acral lick. An animal model of obsessive-compulsive disorder. Arch Gen Psychiatry 49:517–521

    Article  PubMed  CAS  Google Scholar 

  • Reisner IR et al (1996) Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non- aggressive dogs. Brain Res 714:57–64

    Article  PubMed  CAS  Google Scholar 

  • Rosell DR et al (2010) Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry 67:1154–1162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rosier A et al (1996) Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using (18F)altanserin and positron emission tomographic imaging. Psychiatry Res 68:11–22

    Article  PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11:85–108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sherman BL, Mills DS (2008) Canine anxieties and phobias: an update on separation anxiety and noise aversions. Vet Clin North Am Small Anim Pract 38:1081–1106, vii

    Article  PubMed  Google Scholar 

  • Soloff P et al (2007) 5HT(2A) receptor binding is increased in borderline personality disorder. Biol Psychiatry 62:580–587

    Article  PubMed  CAS  Google Scholar 

  • Stanley M et al (1983) Alterations in pre- and postsynaptic serotonergic neurons in suicide victims. Psychopharmacol Bull 19:684–687

    Google Scholar 

  • Starkey MP et al (2005) Dogs really are man's best friend–canine genomics has applications in veterinary and human medicine! Brief Funct Genomic Proteomic 4:112–128

    Article  PubMed  CAS  Google Scholar 

  • Takao K et al (1995) Chronic forced swim stress of rats increases frontal cortical 5-HT2 receptors and the wet-dog shakes they mediate, but not frontal cortical beta-adrenoceptors. Eur J Pharmacol 294:721–726

    Article  PubMed  CAS  Google Scholar 

  • Terriere D et al (1995) Evaluation of radioiodo-4-amino-N-[1-[3-(4-fluorophenoxy)-propyl]-4- methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide as a potential 5HT2 receptor tracer for SPE(C)T. Nucl Med Biol 22:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga M et al (2009) Neuroimaging and physiological evidence for involvement of glutamatergic transmission in regulation of the striatal dopaminergic system. J Neurosci 29:1887–1896

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Unschuld PG et al (2007) Polymorphisms in the serotonin receptor gene HTR2A are associated with quantitative traits in panic disorder. Am J Med Genet B Neuropsychiatr Genet 144B:424–429

    Article  PubMed  CAS  Google Scholar 

  • van den Bergh L et al (2008) Evaluation of the serotonergic genes htr1A, htr1B, htr2A, and slc6A4 in aggressive behavior of golden retriever dogs. Behav Genet 38:55–66

    Article  Google Scholar 

  • Van Laere K et al (2001) 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med 28:873–887

    Article  PubMed  Google Scholar 

  • Vermeire S et al (2009a) Regional cerebral blood flow changes in dogs with anxiety disorders, measured with SPECT. Brain Imaging Behav 3:342–349

    Article  Google Scholar 

  • Vermeire ST et al (2009b) Evaluation of the brain 5-HT2A receptor binding index in dogs with anxiety disorders, measured with 123I-5I-R91150 and SPECT. J Nucl Med 50:284–289

    Article  PubMed  Google Scholar 

  • Vermeire S et al (2010) A Cavalier King Charles dog with shadow chasing: clinical recovery and normalization of the dopamine transporter binding after clomipramine treatment. J Vet Behav Clin Appl Res 5:345–349

    Article  Google Scholar 

  • Vermeire S et al (2011) Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioural disorders. Res Vet Sci 91:465–472

    Article  PubMed  CAS  Google Scholar 

  • Vermeire S et al (2012) Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res 201:78–87

    Article  PubMed  CAS  Google Scholar 

  • Volavka J (1995) Neurobiology of violence. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Waelbers T (2012) Anesthesia and functional brain imaging in dogs and cats. Faculty of Veterinary Medicine, University Ghent, Belgium PhD Dissertation

    Google Scholar 

  • Waelbers T et al (2012b) Effects of medetomidine and ketamine on the regional cerebral blood flow in cats: a SPECT study. Vet J 192:81–88

    Google Scholar 

  • Waelbers T et al (2010) Brain perfusion part 2: anesthesia and brain perfusion in small animals. Vlaams Diergeneeskundig Tijdschrift 79:179–188

    Google Scholar 

  • Waelbers T et al (2011) The effect of medetomidine on the regional cerebral blood flow in dogs measured using Technetium-99m-Ethyl Cysteinate Dimer SPECT. Res Vet Sci 91:138–143

    Article  PubMed  CAS  Google Scholar 

  • Waelbers T et al (2012a) Regional distribution of technetium-99m-ECD in the canine brain: optimal injection-acquisition interval in adult beagles. J Vet Behav Clin Appl Res 7:261–267

    Google Scholar 

  • Waelbers T et al (2013) Regional brain perfusion in 12 cats measured with technetium-99m-ethyl cysteinate dimer pinhole single photon emission computed tomography (SPECT). J Feline Med Surg 15(2):105–110

    Article  PubMed  Google Scholar 

  • Westergaard GC et al (1999) CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology (Berl) 146:440–446

    Article  CAS  Google Scholar 

  • Zanardi R et al (2001) Increased 5-hydroxytryptamine-2 receptor binding in the frontal cortex of depressed patients responding to paroxetine treatment: a positron emission tomography scan study. J Clin Psychopharmacol 21:53–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathelijne Peremans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peremans, K. et al. (2014). Brain SPECT in the Impulsive-Aggressive Dog. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics