Skip to main content

Perfusion CT: Principles, Technical Aspects and Applications in Oncology

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Dynamic contrast-enhanced CT imaging techniques (perfusion CT) enable clinicians to evaluate the functional blood supply to a tissue of interest or organ. From the subsequent changes in enhancement following intravenous administration of an iodinated contrast agent, qualitative and quantitative parameters may be assessed that describe the enhancement time curves obtained or quantify regional perfusion, blood volume and microcirculatory changes, respectively. These parameters may provide prognostic or predictive information to the clinician and enable treatment effects on the vasculature to be assessed. Its clinical use has increased in recent years due to a combination of factors: technological advances in acquisition and post-processing methods that have facilitated its clinical implementation and a perceived clinical need, related to the use of therapeutic interventions in ischemic vascular disease and oncology. This chapter discusses the principles of perfusion CT techniques, clinical protocols and clinical application in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Arterial input function

BF:

Regional blood flow

BV:

Blood volume

CT:

Computed tomography

CTDIvol :

CT Dose Index by volume

DCE-CT:

Dynamic contrast enhanced CT

DLP:

Dose length product

DNA:

DeoxyriboNucleic Acid

EF:

Extraction Fraction

18F-FDG:

Fluoro-deoxy-glucose

HCC:

Hepatocellular carcinoma

K trans :

Transfer constant

MTT:

Mean transit time

MVD:

Microvessel density

NSCLC:

Non small cell lung cancer

PET:

Positron emission tomography

PS:

Permeability surface area product

ROI:

Region of interest

VEGF:

Vascular endothelial growth factor

References

  1. Miles KA, et al. Experimental Cancer Medicine Centre Imaging Network Group. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol. 2012;22:1430–41.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. The role of angiogenesis in tumour growth. Semin Cancer Biol. 1992;3:65–71.

    PubMed  CAS  Google Scholar 

  3. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  4. Goh V, et al. Assessment of the metabolic flow phenotype of primary colorectal cancer: correlations with microvessel density are influenced by the histological scoring method. Eur Radiol. 2012;22:1687–92.

    Article  PubMed  Google Scholar 

  5. Yi CA, et al. Solitary pulmonary nodules: dynamic enhanced multidetector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology. 2004;233:191–9.

    Article  PubMed  Google Scholar 

  6. Li Y, et al. Peripheral lung carcinoma: correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT. Lung Cancer. 2008;61:44–53.

    Article  PubMed  Google Scholar 

  7. Ma SH, et al. Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer. 2008;8:186.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sauter AW, et al. Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT. J Nucl Med. 2012;53:521–9.

    Article  PubMed  CAS  Google Scholar 

  9. Spira D, et al. Assessment of tumor vascularity in lung cancer using Volume Perfusion CT (VPCT) with histopathologic comparison: a further step toward an individualized tumor characterization. J Comput Assist Tomogr. 2013;37:15–21.

    Article  PubMed  Google Scholar 

  10. Tateishi U, et al. Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr. 2002;26:185–90.

    Article  PubMed  Google Scholar 

  11. Wang JH, et al. Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol. 2006;186:1423–30.

    Article  PubMed  Google Scholar 

  12. Reiner CS, et al. Computed tomography perfusion imaging of renal cell carcinoma: systematic comparison with histopathological angiogenic and prognostic markers. Invest Radiol. 2013;48:183–91.

    Google Scholar 

  13. Yao J, et al. Gastric adenocarcinoma: can perfusion CT help to noninvasively evaluate tumor angiogenesis? Abdom Imaging. 2011;36:15–21.

    Article  PubMed  Google Scholar 

  14. Goh V, et al. Colorectal tumor vascularity: quantitative assessment with multidetector CT – do tumor perfusion measurements reflect angiogenesis? Radiology. 2008;249:510–7.

    Article  PubMed  Google Scholar 

  15. Hattori Y, et al. Enhancement patterns of pancreatic adenocarcinoma on conventional dynamic multi-detector row CT: correlation with angiogenesis and fibrosis. World J Gastroenterol. 2009;15:3114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mandeville HC, et al. Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology. 2012;264:581–9.

    Article  PubMed  Google Scholar 

  17. Tacelli N, et al. Assessment of non-small cell lung cancer perfusion: pathologic-CT correlation in 15 patients. Radiology. 2010;257:863–71.

    Article  PubMed  Google Scholar 

  18. Saddi KA, et al. Large deformation registration of contrast-enhanced images with volume preserving constraint. In: Pluim JPW, Reinhardt JM, editors. Proceedings of SPIE: medical imaging 2007—image processing, vol. 6512. Bellingham: International Society for Optical Engineering; 2007. p. 651203.

    Chapter  Google Scholar 

  19. Goh V, et al. Radiation dose from volumetric helical perfusion CT of the thorax, abdomen or pelvis. Eur Radiol. 2011;21:974–81.

    Article  PubMed  Google Scholar 

  20. Goh V, et al. Reproducibility of dynamic contrast-enhanced MRI: why we should care. Radiology. 2013;266:698–700.

    Google Scholar 

  21. Cenic A, et al. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral flow maps. AJNR Am J Neuroradiol. 2000;21:462–70.

    PubMed  CAS  Google Scholar 

  22. Nabavi DG, et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr. 1999;23:506–15.

    Article  PubMed  CAS  Google Scholar 

  23. Goh V, et al. Quantitative assessment of tissue perfusion using MDCT: comparison of colorectal cancer and skeletal muscle measurement reproducibility. AJR Am J Roentgenol. 2006;187:164–9.

    Article  PubMed  Google Scholar 

  24. Ng QS, et al. Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR Am J Roentgenol. 2006;187:1079–84.

    Article  PubMed  Google Scholar 

  25. Purdie TG, et al. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumor. Phys Med Biol. 2001;46:3161–75.

    Article  PubMed  CAS  Google Scholar 

  26. Ng QS, et al. Lung cancer perfusion at multi-detector row CT: reproducibility of whole tumor quantitative measurements. Radiology. 2006;239:547–53.

    Article  PubMed  Google Scholar 

  27. Erasmus JJ, et al. Inter- and intra-observer variability in measurement of non-small cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol. 2003;21:2574–82.

    Article  PubMed  Google Scholar 

  28. Goh V, et al. Quantitative assessment of colorectal cancer tumor vascular parameters by using perfusion CT: influence of tumor region of interest. Radiology. 2008;247:726–32.

    Article  PubMed  Google Scholar 

  29. Sanelli PC, et al. Reproducibility of postprocessing of quantitative CT perfusion maps. AJR Am J Roentgenol. 2007;188:213–8.

    Article  PubMed  Google Scholar 

  30. Fiorella D, et al. Assessment of the reproducibility of postprocessing dynamic CT perfusion data. AJNR Am J Neuroradiol. 2004;25:97–107.

    PubMed  Google Scholar 

  31. Bisdas S, et al. Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement. Eur Radiol. 2008;18:2241–50.

    Article  PubMed  Google Scholar 

  32. Goh V, et al. Computed tomography perfusion imaging for therapeutic assessment: has it come of age as a biomarker in oncology? Invest Radiol. 2012;47:2–4.

    Article  PubMed  Google Scholar 

  33. Lissoni P, et al. Chemotherapy and angiogenesis in advanced cancer: vascular endothelial growth factor (VEGF) decline as predictor of disease control during taxol therapy in metastatic breast cancer. Int J Biol Markers. 2000;15:308–11.

    PubMed  CAS  Google Scholar 

  34. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  PubMed  CAS  Google Scholar 

  35. Hinnen P, Eskens FA. Vascular disrupting agents in clinical development. Br J Cancer. 2007;96:1159–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Garcia-Barros M, et al. Tumour response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.

    Article  PubMed  CAS  Google Scholar 

  37. Chen G, et al. Computed tomography perfusion in the evaluating the therapeutic effect of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2008;14:5738–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parulekar WR, Eisenhauer EA. Phase I trial design for solid tumour studies of targeted non-cytotoxic agents: theory and practice. J Natl Cancer Inst. 2004;96:990–7.

    Article  PubMed  CAS  Google Scholar 

  39. Hurwitz H, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  40. Escudier B, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  PubMed  CAS  Google Scholar 

  41. Motzer RJ, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  PubMed  CAS  Google Scholar 

  42. Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  43. Sahani DV, et al. Advanced hepatocellular carcinoma: CT Perfusion of liver and tumor tissue-initial experience. Radiology. 2007;243:736–43.

    Article  PubMed  Google Scholar 

  44. Li XS, et al. The value of perfusion CT in predicting the short term response to synchronous radiochemotherapy for cervical squamous cancer. Eur Radiol. 2012;22:617–24.

    Article  PubMed  Google Scholar 

  45. Tateishi U, et al. Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer. 2002;95:835–42.

    Article  PubMed  Google Scholar 

  46. Goh V, et al. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. Eur Radiol. 2009;19:79–89.

    Article  PubMed  Google Scholar 

  47. Hayano K, et al. Perfusion CT can predict response to chemoradiation therapy and survival in oesophageal squamous cell carcinoma: initial results. Oncol Rep. 2007;18:901–8.

    PubMed  Google Scholar 

  48. Hayano K, et al. Quantitative measurement of blood flow using perfusion CT for assessing clinicopathological features and prognosis in patients with rectal cancer. Dis Colon Rectum. 2009;52:1624–9.

    Article  PubMed  Google Scholar 

  49. Hermans R, et al. Tumor perfusion rate determined non-invasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:1351–6.

    Article  PubMed  Google Scholar 

  50. Haider MA, et al. Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys. 2005;62:1100–7.

    Article  PubMed  Google Scholar 

  51. Fournier LS, et al. Metastatic renal carcinoma: evaluation of anti-angiogenic therapy with dynamic contrast enhanced CT. Radiology. 2010;256:511–8.

    Google Scholar 

  52. Han KS, et al. Pretreatment assessment of tumor enhancement on contrast-enhanced computed tomography as a potential predictor of treatment outcome in metastatic renal cell carcinoma patients receiving antiangiogenic therapy. Cancer. 2010;116:2332–42.

    PubMed  CAS  Google Scholar 

  53. Bisdas S, et al. Response and progression-free survival in oropharynx squamous cell carcinoma assessed by pretreatment perfusion CT: comparison with tumor volume measurements. AJNR Am J Neuroradiol. 2009;30:793–9.

    Article  PubMed  CAS  Google Scholar 

  54. Bisdas S, et al. Outcome prediction after surgery and chemoradiation of squamous cell carcinoma in the oral cavity, oropharynx, and hypopharynx: use of baseline perfusion CT microcirculatory parameters vs. tumor volume. Int J Radiat Oncol Biol Phys. 2009;73:1313–8.

    Article  PubMed  Google Scholar 

  55. Jiang T, et al. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced HCC using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Invest Radiol. 2012;47:11–7.

    Article  PubMed  Google Scholar 

  56. Wang J, et al. Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol. 2009;193:1090–6.

    Article  PubMed  Google Scholar 

  57. Hegenscheid K, et al. Assessing early vascular changes and treatment response after laser-induced thermotherapy of pulmonary metastases with perfusion CT: initial experience. AJR Am J Roentgenol. 2010;194:1116–23.

    Article  PubMed  Google Scholar 

  58. Ippolito D, et al. Hepatocellular carcinoma treated with transarterial chemoembolization: dynamic perfusion-CT in the assessment of residual tumor. World J Gastroenterol. 2010;16:5993–6000.

    PubMed  PubMed Central  Google Scholar 

  59. Goh V, et al. The flow-metabolic phenotype of primary colorectal cancer: assessment by integrated 18F-FDG PET/perfusion CT with histopathologic correlation. J Nucl Med. 2012;53:687–92.

    Article  PubMed  CAS  Google Scholar 

  60. Ippolito D, et al. Feasibility of perfusion CT technique integrated into conventional (18)FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study. Eur J Nucl Med Mol Imaging. 2013;40:156–65.

    Article  PubMed  Google Scholar 

  61. Sauter AW, et al. Correlation between [(18)F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2013;40:677–84.

    Google Scholar 

  62. Delrue L, et al. Assessment of tumor vascularization in pancreatic adenocarcinoma using 128-slice perfusion computed tomography imaging. J Comput Assist Tomogr. 2011;35:434–8.

    Article  PubMed  Google Scholar 

  63. Kandel S, et al. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results. Eur Radiol. 2009;19:2641–6.

    Article  PubMed  Google Scholar 

  64. Klauss M, et al. Computed tomography perfusion analysis of pancreatic carcinoma. J Comput Assist Tomogr. 2012;36:237–42.

    Article  PubMed  Google Scholar 

  65. Delrue L, et al. Tissue perfusion in pathologies of the pancreas: assessment using 128-slice computed tomography. Abdom Imaging. 2012;37:595–601.

    Article  PubMed  CAS  Google Scholar 

  66. Tsuji Y, et al. Perfusion CT is superior to angiography in predicting pancreatic necrosis in patients with severe acute pancreatitis. J Gastroenterol. 2010;45:1155–62.

    Article  PubMed  Google Scholar 

  67. Arikawa S, et al. Assessment of chronic pancreatitis: use of whole pancreas perfusion with 256-slice computed tomography. Pancreas. 2012. [Epub ahead of print].

    Google Scholar 

  68. Lu N, et al. 64-slice CT perfusion imaging of pancreatic adenocarcinoma and mass-forming chronic pancreatitis. Acad Radiol. 2011;18:81–8.

    Article  PubMed  Google Scholar 

  69. Swensen SJ, et al. Lung nodule enhancement at CT: multicenter study. Radiology. 2000;214:73–80.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang M, Kono M. Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology. 1997;205:471–8.

    PubMed  CAS  Google Scholar 

  71. Sitartchouk I, et al. Computed tomography perfusion using first pass methods for lung nodule characterization. Invest Radiol. 2008;43:349–58.

    Article  PubMed  Google Scholar 

  72. Ohno Y, et al. Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320-detector row perfusion CT versus FDG PET/CT. Radiology. 2011;258:599–609.

    Article  PubMed  Google Scholar 

  73. Fournier LS, et al. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent. Eur Radiol. 2004;14:2125–33.

    Article  PubMed  Google Scholar 

  74. Ippolito D, et al. Perfusion computed tomographic assessment of early hepatocellular carcinoma in cirrhotic liver disease: initial observations. J Comput Assist Tomogr. 2008;32:855–8.

    Article  PubMed  Google Scholar 

  75. Ippolito D, et al. Perfusion CT in cirrhotic patients with early stage hepatocellular carcinoma: assessment of tumor-related vascularization. Eur J Radiol. 2010;73:148–52.

    Article  PubMed  Google Scholar 

  76. Ippolito D, et al. Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: role of dynamic-CT perfusion imaging. Eur Radiol. 2012;22:803–11.

    Article  PubMed  Google Scholar 

  77. Goh V, et al. Differentiation between diverticulitis and colorectal cancer: quantitative CT perfusion measurements versus morphologic criteria–initial experience. Radiology. 2007;242:456–62.

    Article  PubMed  Google Scholar 

  78. Trojanowska A, et al. Squamous cell cancer of hypopharynx and larynx – evaluation of metastatic nodal disease based on computed tomography perfusion studies. Eur J Radiol. 2012;81(5):1034–9.

    Article  PubMed  CAS  Google Scholar 

  79. Bisdas S, et al. Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. AJNR Am J Neuroradiol. 2008;29:1376–81.

    Article  PubMed  CAS  Google Scholar 

  80. Veit-Haibach P, et al. Combined PET/CT-perfusion in patients with head and neck cancers. Eur Radiol. 2013;23:163–73.

    Article  PubMed  Google Scholar 

  81. Liu Y, et al. Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Res. 2007;9:R40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westerland, O., Goh, V. (2014). Perfusion CT: Principles, Technical Aspects and Applications in Oncology. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics