Skip to main content

Fuel Cells: Cogeneration of C2 Hydrocarbons or Simultaneous Production/Separation of H2 and C2 Hydrocarbons

  • Chapter
  • First Online:
Alternative Energies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

Chemicals and energy cogeneration processes have been shown to be a promising alternative to conventional reactors and fuel cells. Solid electrolyte membrane reactors (SEMRs) have been widely studied in fuel cells applied as a chemical reactor. This chapter describes the SEMRs and important catalytic aspects on the oxidative coupling of methane (OCM) to understand how these two technological alternatives can be combined to increase the C2 hydrocarbon yield, cogenerate electric power or produce valuable chemical compounds by using of SEMR in its two main operating modes (fuel cell and O2− ion “pumping” mode).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boudghene Stambouli, A., Traversa, E.: Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6(3), 295–304 (2002)

    Article  Google Scholar 

  2. Kirubakaran, A., Jain, S., Nema, R.K.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)

    Article  Google Scholar 

  3. Mekhilef, S., Saidur, R., Safari, A.: Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16(1), 981–989 (2012)

    Article  Google Scholar 

  4. Vayenas, C.G.: Catalytic and electrocatalytic reactions in solid oxide fuel cells. Solid State Ionics 28–30, Part 2(0), 1521–1539 (1988)

    Google Scholar 

  5. Athanassiou, C., Pekridis, G., Kaklidis, N., Kalimeri, K., Vartzoka, S., Marnellos, G.: Hydrogen production in solid electrolyte membrane reactors (SEMRs). Int. J. Hydrogen Energy 32(1), 38–54 (2007)

    Article  Google Scholar 

  6. Guo, X.-M., Hidajat, K., Ching, C.-B., Chen, H.-F.: Oxidative coupling of Methane in a Solid Oxide Membrane Reactor. Ind. Eng. Chem. Res. 36(9), 3576–3582 (1997)

    Article  Google Scholar 

  7. Keller, G.E., Bhasin, M.M.: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73(1), 9–19 (1982)

    Article  Google Scholar 

  8. Lapeña-Rey, N., Middleton, P.H.: The selective oxidation of methane to ethane and ethylene in a solid oxide electrolyte reactor. Appl. Catal. A 240(1–2), 207–222 (2003)

    Article  Google Scholar 

  9. Guczi, L., Van Santen, R.A., Sarma, K.V.: Low-temperature coupling of Methane. Catal. Rev. 38(2), 249–296 (1996)

    Article  Google Scholar 

  10. Chua, Y.T., Mohamed, A.R., Bhatia, S.: Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2). Appl. Catal. A 343(1–2), 142–148 (2008)

    Article  Google Scholar 

  11. Andorf, R., Mleczko, L., Schweer, D., Baerns, M.: Oxidative coupling of methane in a bubbling fluidized bed reactor. Can. J. Chem. Eng. 69(4), 891–897 (1991)

    Article  Google Scholar 

  12. Coronas, J., Menendez, M., Santamaria, J.: Development of ceramic membrane reactors with a non-uniform permeation pattern. Application to methane oxidative coupling. Chem. Eng. Sci. 49(24, Part A), 4749–4757 (1994)

    Google Scholar 

  13. Ji, S., Xiao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., Green, M.L.H.: Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M–W–Mn/SiO2 catalysts. J. Catal. 220(1), 47–56 (2003)

    Article  Google Scholar 

  14. Kiatkittipong, W., Tagawa, T., Goto, S., Assabumrungrat, S., Silpasup, K., Praserthdam, P.: Comparative study of oxidative coupling of methane modeling in various types of reactor. Chem. Eng. J. 115(1–2), 63–71 (2005)

    Google Scholar 

  15. Klose, F., Wolff, T., Thomas, S., Seidel-Morgenstern, A.: Operation modes of packed-bed membrane reactors in the catalytic oxidation of hydrocarbons. Appl. Catal. A 257(2), 193–199 (2004)

    Article  Google Scholar 

  16. Leyshon, D.W.: Thin bed reactor for conversion of Methane to higher Hydrocarbons. In: Holmen, A., Jens, K.J., Kolboe, S. (eds.) Studies in Surface Science and Catalysis, vol. 61, pp. 497–507. Elsevier, Amsterdam (1991). doi:10.1016/s0167-2991(08)60116-0

  17. van Looij, F., Mulder, A., Boon, A.Q.M., Scheepens, J.F., Geus, J.W.: Fixed bed catalytic reactors based on sintered metals. In: Guczi, L., Solymosi, F., Tétényi, P. (eds.) Studies in Surface Science and Catalysis, vol. 75, pp. 1377–1389. Elsevier, Amsterdam (1993). doi:10.1016/s0167-2991(08)64458-4

  18. Kiatkittipong, W., Tagawa, T., Goto, S., Assabumrungrat, S., Praserthdam, P.: Oxidative coupling of Methane in the LSM/YSZ/LaAlO SOFC Reactor. J. Chem. Eng. Jpn. 37(12), 1461–1470 (2004)

    Article  Google Scholar 

  19. Kiatkittipong, W., Goto, S., Tagawa, T., Assabumrungrat, S., Praserthdam, P.: Simulation of oxidative coupling of Methane in Solid Oxide Fuel Cell type reactor for C2 Hydrocarbon and electricity co-generation. J. Chem. Eng. Jpn. 38(10), 841–848 (2005)

    Article  Google Scholar 

  20. Garagounis, I., Kyriakou, V., Anagnostou, C., Bourganis, V., Papachristou, I., Stoukides, M.: Solid electrolytes: applications in heterogeneous catalysis and chemical cogeneration. Ind. Eng. Chem. Res. 50(2), 431–472 (2010)

    Article  Google Scholar 

  21. Stoukides, M.: Solid-electrolyte membrane reactors: current experience and future outlook. Catal. Rev.—Sci. Eng. 42(1–2), 1–70 (2000)

    Article  Google Scholar 

  22. Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003)

    Article  Google Scholar 

  23. Zainoodin, A.M., Kamarudin, S.K., Daud, W.R.W.: Electrode in direct methanol fuel cells. Int. J. Hydrogen Energy 35(10), 4606–4621 (2010)

    Article  Google Scholar 

  24. Alcaide, F., Cabot, P.-L., Brillas, E.: Fuel cells for chemicals and energy cogeneration. J. Power Sources 153(1), 47–60 (2006)

    Article  Google Scholar 

  25. McLean, G.F., Niet, T., Prince-Richard, S., Djilali, N.: An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27(5), 507–526 (2002)

    Article  Google Scholar 

  26. Neergat, M., Shukla, A.K.: A high-performance phosphoric acid fuel cell. J. Power Sources 102(1–2), 317–321 (2001)

    Article  Google Scholar 

  27. Zhu, W.Z., Deevi, S.C.: A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng., A 362(1–2), 228–239 (2003)

    Article  Google Scholar 

  28. Stambouli, A.B., Traversa, E.: Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002)

    Article  Google Scholar 

  29. Langer, S.H., Pate, K.T.: Electrogenerative reduction of nitric oxide. Nature 284(5755), 434–435 (1980)

    Article  Google Scholar 

  30. Otsuka, K., Sawada, H., Yamanaka, I.: A hydrogen-nitric oxide cell for the synthesis of hydroxylamine. J. Electrochem. Soc. 143(11), 3491–3497 (1996)

    Article  Google Scholar 

  31. Alcaide, F., Brillas, E., Cabot, P.L., Casado, J.: Electrogeneration of hydroperoxide ion using an alkaline fuel cell. J. Electrochem. Soc. 145(10), 3444–3449 (1998)

    Article  Google Scholar 

  32. Ramachandra, A.M., Lu, Y., Ma, Y.H., Moser, W.R., Dixon, A.G.: Oxidative coupling of methane in porous Vycor membrane reactors. J. Membr. Sci. 116(2), 253–264 (1996)

    Article  Google Scholar 

  33. Kölsch, P., Noack, M., Schäfer, R., Georgi, G., Omorjan, R., Caro, J.: Development of a membrane reactor for the partial oxidation of hydrocarbons: direct oxidation of propane to acrolein. J. Membr. Sci. 198(1), 119–128 (2002)

    Article  Google Scholar 

  34. Marnellos, G., Stoukides, M.: Catalytic studies in electrochemical membrane reactors. Solid State Ionics 175(1–4), 597–603 (2004)

    Article  Google Scholar 

  35. Munder, B., Ye, Y., Rihko-Struckmann, L., Sundmacher, K.: Solid electrolyte membrane reactor for controlled partial oxidation of hydrocarbons: Model and experimental validation. Catal. Today 104(2–4), 138–148 (2005)

    Article  Google Scholar 

  36. Coronas, J., Santamaría, J.: Separations using zeolite membranes. Sep. Purif. Methods 28(2), 127–177 (1999)

    Article  Google Scholar 

  37. Lunsford, J.H.: The catalytic conversion of methane to higher hydrocarbons. Catal. Today 6(3), 235–259 (1990)

    Article  Google Scholar 

  38. Mleczko, L., Pannek, U., Rothaemel, M., Baerns, M.: Oxidative coupling of methane over a La2O3/CaO catalyst. Optimization of reaction conditions in a bubbling fluidized-bed reactor. Can. J. Chem. Eng. 74(2), 279–287 (1996)

    Article  Google Scholar 

  39. Lin, J.Z., Gu, J.F., Yang, D.X., Zhang, C.W., Yang, Y.L., Chu, Y.L., Li, S.B.: Stability test of W-Mn/SiO2 catalyst for oxidative coupling of methane. Shiyou Huagong 24, 293–298 (1995)

    Google Scholar 

  40. Aigler, J.M., Lunsford, J.H.: Oxidative dimerization of methane over MgO and Li+/MgO monoliths. Appl. Catal. 70(1), 29–42 (1991)

    Google Scholar 

  41. Osada, Y., Koike, S., Fukushima, T., Ogasawara, S., Shikada, T., Ikariya, T.: Oxidative coupling of methane over Y2O3CaO catalysts. Appl. Catal. 59(1), 59–74 (1990)

    Article  Google Scholar 

  42. Sergei, P., Ping, Q., Jack, H.L.: Elementary reactions in the oxidative coupling of Methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. Catal 179(1), 222–230 (1998)

    Article  Google Scholar 

  43. Sinev, M.Y., Korchak, V.N., Krylov, O.V.: Highly selective ethane formation by reduction of BaO/sub 2/with methane. Kinet Catal (Engl Transl); (United States) 27(5) (1987). Translated from Kinet Katal 27(5), 1274 (Sep–Oct 1986) (Medium: X; Size: Pages: 1110)

    Google Scholar 

  44. Voskresenskaya, E.N., Roguleva, V.G., Anshits, A.G.: Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling. Catal. Rev. 37(1), 101–143 (1995)

    Article  Google Scholar 

  45. Gellings, P.J., Bouwmeester, H.J.M.: Solid state aspects of oxidation catalysis. Catal. Today 58(1), 1–53 (2000)

    Article  Google Scholar 

  46. Driscoll, D.J., Martir, W., Wang, J.-X., Lunsford, J.: The production of gas phase methyl radicals over lithium-promoted MgO. In: Che, M., Bond, G.C. (eds.) Studies in Surface Science and Catalysis, vol. 21, pp. 403–408. Elsevier, Amsterdam (1985). doi:10.1016/s0167-2991(08)64940-x

  47. Ferreira, V.J., Tavares, P., Figueiredo, J.L., Faria, J.L.: Effect of Mg, Ca, and Sr on CeO2 based catalysts for the oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. Ind. Eng. Chem. Res. 51(32), 10535–10541 (2012)

    Article  Google Scholar 

  48. Weng, W., Chen, M., Wan, H., Liao, Y.: High-temperature in situ FTIR spectroscopy study of LaOF and BaF2/LaOF catalysts for methane oxidative coupling. Catal. Lett. 53(1–2), 43–50 (1998)

    Article  Google Scholar 

  49. Wang, X.L., Zhang, J.N., Yang, D.X., Zhang, C.W., Lin, J.Z., Li, S.B.: Oxidative coupling of methane over W-Mn/Sio2 catalyst in a bench-scale stainless steel fluidized-bed reactor. Shiyou Huagong 26, 361–367 (1997)

    Google Scholar 

  50. Simon, U., Görke, O., Berthold, A., Arndt, S., Schomäcker, R., Schubert, H.: Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane. Chem. Eng. J. 168(3), 1352–1359 (2011)

    Article  Google Scholar 

  51. Palermo, A., Holgado Vazquez, J.P., Lee, A.F., Tikhov, M.S., Lambert, R.M.: Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. J. Catal. 177(2), 259–266 (1998)

    Article  Google Scholar 

  52. Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., Schomäcker, R.: Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A 425–426, 53–61 (2012)

    Article  Google Scholar 

  53. Mleczko, L., Pannek, U., Niemi, V.M., Hiltunen, J.: Oxidative coupling of methane in a fluidized-bed reactor over a highly active and selective catalyst. Ind. Eng. Chem. Res. 35(1), 54–61 (1996)

    Article  Google Scholar 

  54. Pannek, U., Mleczko, L.: Comprehensive model of oxidative coupling of methane in a fluidized-bed reactor. Chem. Eng. Sci. 51(14), 3575–3590 (1996)

    Article  Google Scholar 

  55. Pannek, U., Mleczko, L.: Reaction engineering simulations of oxidative coupling of methane in a circulating fluidized-bed reactor. Chem. Eng. Technol. 21(10), 811–821 (1998)

    Article  Google Scholar 

  56. Edwards, J.H., Tyler, R.J., White, S.D.: Oxidative coupling of methane over lithium-promoted magnesium oxide catalysts in fixed-bed and fluidized-bed reactors. Energy Fuels 4(1), 85–93 (1990)

    Google Scholar 

  57. Lu, Y., Dixon, A.G., Moser, W.R., Ma, Y.H., Balachandran, U.: Oxygen-permeable dense membrane reactor for the oxidative coupling of methane. J. Membr. Sci. 170(1), 27–34 (2000)

    Article  Google Scholar 

  58. Nozaki, T., Fujimoto, K.: Oxide ion transport for selective oxidative coupling of methane with new membrane reactor. AIChE J. 40(5), 870–877 (1994)

    Article  Google Scholar 

  59. Zeng, Y., Lin, Y.S., Swartz, S.L.: Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J. Membr. Sci. 150(1), 87–98 (1998)

    Article  Google Scholar 

  60. Shao, Z., Dong, H., Xiong, G., Cong, Y., Yang, W.: Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J. Membr. Sci. 183(2), 181–192 (2001)

    Article  Google Scholar 

  61. Jiang, Y., Yentekakis, I.V., Vayenas, C.G.: Methane to ethylene with 85 percent yield in a gas recycle electrocatalytic reactor-separator. Science 264(5165), 1563–1566 (1994)

    Article  Google Scholar 

  62. Tonkovich, A.L., Carr, R.W., Aris, R.: Enhanced C2 yields from methane oxidative coupling by means of a separative chemical reactor. Science 262(5131), 221–223 (1993)

    Article  Google Scholar 

  63. Garagounis, I., Kyriakou, V., Anagnostou, C., Bourganis, V., Papachristou, I., Stoukides, M.: Solid electrolytes: applications in heterogeneous catalysis and chemical cogeneration. Ind. Eng. Chem. Res. 50(2), 431–472 (2011)

    Article  Google Scholar 

  64. Stoukides, M.: Methane conversion to C2 hydrocarbons in solid electrolyte membrane reactors. Res. Chem. Intermed. 32(3–4), 187–204 (2006)

    Article  Google Scholar 

  65. Pujare, N.U., Sammells, A.F.: Methane activation to C2 hydrocarbon species in solid oxide fuel cell. J. Electrochem. Soc. 135(10), 2544–2545 (1988)

    Article  Google Scholar 

  66. Tsiplakides, D., Neophytides, S., Vayenas, C.G.: Investigation of electrochemical promotion using temperature-programmed desorption and work function measurements. Solid State Ionics 136–137, 839–847 (2000)

    Article  Google Scholar 

  67. Vernoux, P., Gaillard, F., Bultel, L., Siebert, E., Primet, M.: Electrochemical Promotion of Propane and Propene Oxidation on Pt/YSZ. J. Catal. 208(2), 412–421 (2002)

    Article  Google Scholar 

  68. Petrolekas, P.D., Balomenou, S., Vayenas, C.G.: Electrochemical promotion of ethylene oxidation on Pt catalyst films deposited on CeO2. J. Electrochem. Soc. 145(4), 1202–1206 (1998)

    Article  Google Scholar 

  69. Otsuka, K., Yokoyama, S., Morikawa, A.: Catalytic activity- and selectivity-control for oxidative coupling of methane by oxygen-pumping through yttria-stabilized zirconia. Chem. Lett. 14(3), 319–322 (1985)

    Article  Google Scholar 

  70. Otsuka, K., Suga, K., Yamanaka, I.: Oxidative coupling of methane applying a solid oxide fuel cell system. Catal. Today 6(4), 587–592 (1990)

    Article  Google Scholar 

  71. Guo, X.-M., Hidajat, K., Ching, C.-B.: An experimental study of oxidative coupling of methane in a solid oxide fuel cell with 1 wt%Sr/La2O3-Bi2O3-Ag-YSZ membrane. Korean J. Chem. Eng. 15(5), 469–473 (1998)

    Article  Google Scholar 

  72. Wiyaratn, W., Appamana, W., Charojrochkul, S., Kaewkuekool, S., Assabumrungrat, S.: Au/La1-xSrxMnO3 nanocomposite for chemical-energy cogeneration in solid oxide fuel cell reactor. J. Ind. Eng. Chem. 18(5), 1819–1823 (2012)

    Article  Google Scholar 

  73. Kiatkittipong, W., Tagawa, T., Goto, S., Assabumrungrat, S., Praserthdam, P.: TPD study in LSM/YSZ/LaAlO system for the use of fuel cell type reactor. Solid State Ionics 166(1–2), 127–136 (2004)

    Article  Google Scholar 

  74. Tagawa, T., Kuroyanagi, K., Goto, S., Assabumrungrat, S., Praserthdam, P.: Selective oxidation of methane in an SOFC-type reactor: effect of applied potential. Chem. Eng. J. 93(1), 3–9 (2003)

    Google Scholar 

  75. Caravaca, A., de Lucas-Consuegra, A., González-Cobos, J., Valverde, J.L., Dorado, F.: Simultaneous production of H2 and C2 hydrocarbons by gas phase electrocatalysis. Appl. Catal. B 113–114, 192–200 (2012)

    Article  Google Scholar 

  76. Caravaca, A., Ferreira, V.J., de Lucas-Consuegra, A., Figueiredo, J.L., Faria, J.L., Valverde, J.L., Dorado, F.: Simultaneous production of H2 and C2 hydrocarbons by using a novel configuration solid-electrolyte+ fixed bed reactor. Int. J. Hydrogen Energy. 38, 3111--3122 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge to ACENET/0001/2007 and project PEst-C/EQB/LA0020/2011, financed by FEDER through COMPETE—Programa Operacional Factores de Competitividade and by FCT—Fundação para a Ciência e a Tecnologia. VJF gratefully acknowledges a PhD grant (SFRH/BD/33647/2009) by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor José Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferreira, V.J., Figueiredo, J.L., Faria, J.L. (2013). Fuel Cells: Cogeneration of C2 Hydrocarbons or Simultaneous Production/Separation of H2 and C2 Hydrocarbons. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_10

Download citation

Publish with us

Policies and ethics