Skip to main content

Moden in Stufenindex-Glasfasern

  • Chapter
  • First Online:
Nichtlineare Faseroptik
  • 4617 Accesses

Zusammenfassung

In diesem Kapitel werden basierend auf den Wellengleichungen die geführten Wellenleitermoden in rotationssymmetrischen zylindrischen Wellenleitern vorgestellt. Wegen der großen technischen Bedeutung beschränken sich hier die Ausführungen auf Stufenindex-Glasfasern. Zur Diskussion nichtlinearer faseroptischer Effekte sind dabei Einmodenfasern (engl. singlemode fiber) besonders wichtig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. E. Snitzer, Cylindrical dielectric waveguide modes. J. Opt. Soc. Am. 51(5), 491–498 (1961)

    Article  MathSciNet  Google Scholar 

  2. D. Marcuse, Light Transmission Optics. Bell Laboratories Series. (Van Nostrand, New York, 1972)

    Google Scholar 

  3. A.W. Snyder, J. Love. Optical Waveguide Theory (Chapman and Hall, London, 1983)

    Google Scholar 

  4. J. Bures, Guided Optics (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  5. H. Renner, R. Ulrich. J.-P., C. Glingener, Einmodenfasern, in Optische Kommunikationstechnik, Hrsg. von E. Voges, K. Petermann (Springer, Berlin, 2002),  81–213

    Google Scholar 

  6. G. Grau, W. Freude, Optische Nachrichtentechnik, 3. Aufl. (Springer, Berlin, 1991)

    Book  Google Scholar 

  7. H.-D. Rudolph, E. Neumann, Approximation for the eigenvalues of the fundamental mode of a step index glass fiber waveguide. Nachrichtentechnische Ztg. 29, 328–329 (1976)

    Google Scholar 

  8. C. Hussey, F. Martinez, Approximate analytic forms for the propagation characteristics of single-mode fibers. Electron. Lett. 21(23), 1103–1104 (1985)

    Article  Google Scholar 

  9. D. Gloge, Weakly guiding fibers. Appl. Opt. 10(10), 2252–2258 (1971)

    Article  Google Scholar 

  10. Produktinformation Fa., Corning. SMF-28e Optical Fiber. Techn. Ber. (2005)

    Google Scholar 

  11. Recommendation ITU-T G.652: Characteristics of a single-mode optical fibre and cable. Telecommunication Standardization Sector of ITU (International Telecommunication Union) (2009)

    Google Scholar 

  12. Recommendation ITU-T G.650.1: Definitions and test methods for linear, deterministic attributes of single-mode fibre and cable. Telecommunication Standardization Sector of ITU (International Telecommunication Union) (2010)

    Google Scholar 

  13. Recommendation ITU-T G.650.2: Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable. Telecommunication Standardization Sector of ITU (International Telecommunication Union) (2007)

    Google Scholar 

  14. K. Petermann, Microbending loss in monomode fibres. Electron. Lett. 12(4), 107–109 (1976)

    Article  Google Scholar 

  15. Norm DIN EN ISO 11146-1: Laser und Laseranlagen - Prüfverfahren für Laserstrahlabmessungen, Divergenzwinkel und Beugungsmaßzahlen. 2005–04. DIN EN ISO 11146–2:2005–05. Deutsches Institut für Normung (2005)

    Google Scholar 

  16. K. Petermann, Constraints for the fundamental-mode spot size for broadband dispersion-compensated single-mode fibres. Electron. Lett. 19(18), 712–714 (1983)

    Article  Google Scholar 

  17. M. Artiglia, P. Coppa, P. Di Vita, M. Potenza, A. Shrama, Mode field diameter measurements in single-mode optical fibers. J. Lightwave Technol. 7(8), 1139–1152 (1989)

    Article  Google Scholar 

  18. W. Freude, A. Sharma, Refractive-index profile and modal dispersion prediction for a single-mode optical waveguide from its far-field radiation pattern. J. Lightwave Technol. 3(3), 628–634 (1985)

    Article  Google Scholar 

  19. C. Pask, Physical interpretation of Petermann’s strange spot size for single-mode fibres. Electron. Lett. 20(3), 144–145 (1984)

    Article  Google Scholar 

  20. M. Young, Mode-field diameter of single-mode optical fiber by far-field scanning. Appl. Opt. 37(24), 5605–5619 (1998)

    Article  Google Scholar 

  21. R. Billington, Effective Area of Optical Fibres-Definition and Measurement Techniques Techn. Ber (National Physical Laboratory, Teddington, 2003)

    Google Scholar 

  22. D. Marcuse, Excitation of the dominant mode of a round fiber by a Gaussian Beam. Bell Syst. Tech. J. 49(8), 1695–1703 (1970)

    Article  Google Scholar 

  23. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56(5), 703–718 (1977)

    Article  Google Scholar 

  24. H.-J. Eichler, J. Eichler, Laser: Bauformen, Strahlführung, Anwendungen, 7. Aufl. (Springer, Berlin, 2010)

    Book  Google Scholar 

  25. G. Agrawal. Nonlinear Fiber Optics, 5. Aufl. (Academic, Amsterdam, 2013)

    Google Scholar 

  26. Y. Namihira, Relationship between nonlinear effective area and modefield diameter for dispersion shifted fibers. Electron. Lett. 30(3), 262–263 (1994)

    Article  Google Scholar 

  27. Y. Namihira, Wavelength dependence of correction factor on effective area and mode field diameter for various singlemode optical fibers. Electron. Lett. 33(17), 1483–1485 (1997)

    Article  Google Scholar 

  28. V.S. Afshar, T.M. Monro, M.C. Sterke, Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides. Opt. Expr. 21(15), 18558–18571 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Engelbrecht .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, R. (2014). Moden in Stufenindex-Glasfasern. In: Nichtlineare Faseroptik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40968-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40968-4_3

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40967-7

  • Online ISBN: 978-3-642-40968-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics