Skip to main content

Innovative Wind Energy Models and Prediction Methodologies

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

Energy sources are among the major driving forces almost all the societal activities and its rather easiest way of extraction is from the fossil fuels, especially, coal and petroleum. However, their exploitations have direct and side effects on the most essential substances, air and water, because of greenhouse gas emissions into the atmosphere. Recent climate change effects are all related to fossil fuel exploitation, and therefore, the trend in the world now is towards excessive use, if possible, of clean and hence environmentally friendly energy sources among which apart from other alternatives wind power is present day attraction. In open literature there are many classical wind power calculation methods. In this chapter innovative ones are explained with applications. Among these stochastic temporal, cumulative semivariogram spatial, statistical perturbation, and innovative wind energy formulation and its Betz limit comparisons are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson M (1992) Current status of wind forms in the UK. Renew Energy Syst

    Google Scholar 

  2. Ang AH, Jang WH (1975) Probability concepts in engineering planning and design. Wiley, New York

    Google Scholar 

  3. Aslan Z, Menteş S, Tolun S (1993) Gökçeada rüzgar enerji potansiyelinin belirlenmesi (Wind power determination at Gökçeada station). First national clean energy symposium. Meteorology Department, İstanbul Technical University, pp 104–112 (in Turkish)

    Google Scholar 

  4. Auwera LD, De Meyer F, Malet LM (1980) The use of the Weibull three-parameter model for estimating mean wind power densities. J Appl Meteorol 19:819–825

    Article  Google Scholar 

  5. Barchet WR, Davis WE (1983) Estimating long-term mean winds from short-term wind data, report 4785, Battelle, PNL, p 21

    Google Scholar 

  6. Barros VR, Estevan EA (1983) On the evaluation of wind power from short wind records. J Appl Meteorol 22:1116–1123

    Google Scholar 

  7. Bennett M, Hamilton PM, Moore DJ (1983) Estimation of low-level winds from upper air data. IEE Proc 130(9):517–520, Pt A

    Google Scholar 

  8. Benjamin JR, Cornell CA (1970) Probability statistics and decision making for civil engineers. McGraw-Hill, New York

    Google Scholar 

  9. Bergey KH (1980) The Lanchester-Betz limit. J Energy 3(6):382–384

    Article  Google Scholar 

  10. Betz A (1926) Schraubenpropeller mit geringstem Energieverlust. Göttinger Nachrichten, mathematisch-physikalische Klasse, pp 193–213

    Google Scholar 

  11. Clarke A (1988) Wind farm location and environmental impact. Network for Alternative Technology and Technology Assessments C/O EEDU, The Open University, UK

    Google Scholar 

  12. Conradsen K, Nielsen LB (1984) Review of Weibull statistics for estimation of wind speed distribution. J Climatol Appl Meteorol 23:1173–1183

    Google Scholar 

  13. Corotis RB, Sigl AB, Cohen MP (1984) Variance analysis of wind characteristics for energy conversion. J Appl Meteorol 23:1477–1479

    Google Scholar 

  14. Cox DR, Miller HD (1965) The theory of stochastic processes. Methuen, London

    Google Scholar 

  15. Davenport AG (1963) The relationship of wind structure to wind loading. In: Proceedings of conference wind effects on structures, National Physics Laboratory, London, England, pp 19–82

    Google Scholar 

  16. Doğan V (1991) Gökçeada için rüzgar enerji potansiyelinin istatistiksel metotlarla incelenmesi statistical investigation of Gökçeada wind potential. Istanbul Tech Univ J:31 (in Turkish)

    Google Scholar 

  17. Dunn PD (1986) Renewable energies: sources, conversion and application. Peter Peregrinus Ltd, p 373

    Google Scholar 

  18. Erasmus DA (1984) A boundary layer wind flow model for areas of complex terrain. Unpublished Ph.D. Thesis, University of Hawaii, p 975

    Google Scholar 

  19. EWEA (1991) Time for action: wind energy in Europe. European Wind Energy Association

    Google Scholar 

  20. Feller W (1968) An introduction to probability theory and its application. Wiley, New York, p 509

    Google Scholar 

  21. Gustavson MR (1979) Limit to wind power utilization. Science 204(4388):13–17

    Google Scholar 

  22. Haltiner GJ (1971) Numerical weather prediction. Wiley, New York, p 317

    Google Scholar 

  23. Hennessey JP Jr (1977) Some aspects of wind power statistics. J Appl Meteorol 16:119–128

    Article  Google Scholar 

  24. Holton JR (1972) An introduction to dynamic meteorology. Academic Press, New York, p 319

    Google Scholar 

  25. İncecik S, Erdoğmuş F (1994) An investigation of wind power potential in western coast of Anatolia. Renew Energy

    Google Scholar 

  26. Justus CG, Hargraves WR, Yalçin A (1976) Nationwide assessment of potential output from wind powered generators. J Appl Meteorol 15:673–678

    Article  Google Scholar 

  27. Justus CG, Mikhail A (1967) Height variation of wind speed and wind distribution statistics. Geophys Res Lett 3:261–264

    Article  Google Scholar 

  28. Justus CG, Hargraves WR, Mikhail A (1976b) Reference wind speed distributions and height profiles for wind turbine design and performance evaluation applications, ERDA ORO/5107-76/4

    Google Scholar 

  29. Justus CG (1978) Wind and wind system performance. Franklin Institute Press, Philadelphia

    Google Scholar 

  30. Kadıoğlu M (1997) Trends in surface air temperature data over Turkey. Int J Climatol 17:511–520

    Article  Google Scholar 

  31. Kadıoğlu M, Şen Z (1998) Power-law relationship in describing temporal and spatial precipitation pattern in Turkey. Theor Appl Climatol 59:93–106

    Article  Google Scholar 

  32. Kahraman G (1993) Gökçeada’da Uğurlu ve Doruk tepe istasyonlari rüzgar enerji potansiyelinin incelenmesi. Istanbul Tech Univ J:64

    Google Scholar 

  33. Kaminsky FC, Kirchhoff RH (1988) Bivariate probability models for the description of average wind speed at two heights. Sol Energy 40(1):49–56

    Article  Google Scholar 

  34. Malet LM (1978) Element d’appreciation de l’energie eolienne en Belgique. IRM Publishing Services B, no. 59

    Google Scholar 

  35. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  36. Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw Hill, New York, p 583

    MATH  Google Scholar 

  37. Petersen EL, Troen I, Frandsen S, Hedegard K (1981) Wind atlas for Denmark. Riso National Laboratory, DK-4000 Roskilde, Denmark, p 229

    Google Scholar 

  38. Reed JW (1979) Wind power climatology of United States—Supplement, SAND78-1620

    Google Scholar 

  39. Schlatter TW (1988) Past and present trends in the objective analysis of meteorological data for nowcasting and numerical forecasting. 8th conference on numerical weather prediction. American Meteorological Society, pp 9–25

    Google Scholar 

  40. Skibin D (1984) Comment “On the evolution of wind power from short wind records”. J Appl Meteorol 23:1477–1479

    Google Scholar 

  41. Sorensen HA (1983) Energy conversion systems. Wiley, New Jersey

    Google Scholar 

  42. Sutton OG (1953) Micrometeorology: a study of physical process in the lowest layers of the Earth’s atmosphere. McGraw-Hill, New York

    Google Scholar 

  43. Şahin AD (2004) Progress and recent trends in wind energy. Prog Energy Combust Sci Int Rev J 30:501–543

    Google Scholar 

  44. Şen Z (1989) Cumulative semivariogram models of regionalized variables. Int J Math Geol 21:891–903

    Article  Google Scholar 

  45. Şen Z, Şahin AD (1997) Regional assessment of wind power in western Turkey by the cumulative semivariogram method. Renew Energy 12(2)

    Google Scholar 

  46. Şen Z (1997) Statistical investigation of wind energy reliability and its application. Renew Energy 10:71–79

    Article  Google Scholar 

  47. Şen Z (1999) Terrain topography classification for wind energy generation. Renew Energy 16:904–907

    Article  Google Scholar 

  48. Şen Z (1992) Standard cumulative semivariograms of stationary stochastic processes and regional correlation. Int J Math Geol 24(4):417–435

    Article  Google Scholar 

  49. Şen Z (1996) Statistical investigation of wind energy reliability and its application. Renew Energy 10:71–79

    Google Scholar 

  50. Şen Z (2008) Solar energy fundamentals and modelling techniques: atmosphere, environment, climate change and renewable energy. Springer, London, p 376

    Google Scholar 

  51. Taylor GI (1925) Eddy motion in the atmosphere. Phil Trans R Soc Lond A 215(1):1–26

    Google Scholar 

  52. Troen I, Petersen EL (1989) European wind atlas, commission of the European communities. Riso National Laboratory, Roskilde, p 655

    Google Scholar 

  53. Wark K, Warner CF (1981) Air pollution. Its origin and control. Harper Collins Publishers, New York, p 526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekâi Şen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Şen, Z. (2013). Innovative Wind Energy Models and Prediction Methodologies. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics