Skip to main content

Component-by-Component Construction of Hybrid Point Sets Based on Hammersley and Lattice Point Sets

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Abstract

In a series of recent articles, such as, e.g., (Hellekalek (2012) Hybrid function systems in the theory of uniform distribution of sequences. Monte Carlo and quasi-Monte Carlo methods 2010. Springer, Berlin, pp. 435–450; Hofer, Kritzer, Larcher, Pillichshammer (Int J Number Theory 5:719–746, 2009); Kritzer (Monatsh Math 168:443–459, 2012); Niederreiter (Acta Arith 138:373–398, 2009)), point sets mixed from integration node sets in different sorts of quasi-Monte Carlo rules have been studied. In particular, a finite version, based on Hammersley and lattice point sets, was introduced in Kritzer (Monatsh Math 168:443–459, 2012), where the existence of such hybrid point sets with low star discrepancy was shown. However, up to now it has remained an open problem whether such low discrepancy hybrid point sets can be explicitly constructed. In this paper, we solve this problem and discuss component-by-component constructions of the desired point sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov, E.I.: On the discrepancy of the Halton sequences. Math. Balkanica (New Series) 18, 15–32 (2004)

    Google Scholar 

  2. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. Springer, Berlin (1997)

    Google Scholar 

  4. Gnewuch, M., Srivastav, A., Winzen, C.: Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complexity 25, 115–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hellekalek, P.: Hybrid function systems in the theory of uniform distribution of sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 435–450. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  6. Hellekalek, P., Kritzer, P.: The diaphony of some finite hybrid point sets. Acta Arith. 156, 257–282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Monatsh. Math. 66, 140–151 (1962) (in German)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hofer, R., Kritzer, P.: On hybrid sequences built of Niederreiter-Halton sequences and Kronecker sequences. Bull. Aust. Math. Soc. 84, 238–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hofer, R., Kritzer, P., Larcher, G., Pillichshammer, F.: Distribution properties of generalized van der Corput-Halton sequences and their subsequences. Int. J. Number Theory 5, 719–746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofer, R., Larcher, G.: Metrical results on the discrepancy of Halton-Kronecker sequences. Mathematische Zeitschrift 271, 1–11 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Joe, S.: Component by component construction of rank-1 lattice rules having \(\mathcal{O}({n}^{-1}{(\ln (n))}^{d})\) star discrepancy. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 293–298. Springer, Berlin/Heidelberg (2004)

    Chapter  Google Scholar 

  12. Joe, S.: An intermediate bound on the star discrepancy. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 451–470. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  13. Keller, A.: Quasi-Monte Carlo image synthesis in a Nutshell. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, this volume 213–249. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  14. Korobov, N.M.: Approximate evaluation of repeated integrals. Doklady Akademii Nauk, SSSR 124, 1207–1210 (1959) (in Russian)

    MathSciNet  MATH  Google Scholar 

  15. Korobov, N.M.: Number-Theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow (1963) (in Russian)

    MATH  Google Scholar 

  16. Kritzer, P.: On an example of finite hybrid quasi-Monte Carlo Point Sets. Monatsh. Math. 168, 443–459 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974) (Reprint, Dover Publications, Mineola 2006)

    MATH  Google Scholar 

  18. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19, 301–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer, New York (2009)

    MATH  Google Scholar 

  20. Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Monatsh. Math. 86, 203–219 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  22. Niederreiter, H.: On the discrepancy of some hybrid sequences. Acta Arith. 138, 373–398 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niederreiter, H.: Further discrepancy bounds and an Erdős-Turán-Koksma inequality for hybrid sequences. Monatsh. Math. 161, 193–222 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Niederreiter, H.: Discrepancy bounds for hybrid sequences involving matrix-method pseudorandom vectors. Publ. Math. Debrecen 79, 589–603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niederreiter, H.: Improved discrepancy bounds for hybrid sequences involving Halton sequences. Acta Arith. 55, 71–84 (2012)

    MathSciNet  Google Scholar 

  26. Niederreiter, H., Winterhof, A.: Discrepancy bounds for hybrid sequences involving digital explicit inversive pseudorandom numbers. Unif. Distrib. Theory 6, 33–56 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing Kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Owen, A.B.: Latin supercube sampling for very high dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 71–102 (1998)

    Article  MATH  Google Scholar 

  29. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, New York/Oxford (1994)

    MATH  Google Scholar 

  30. Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comp. 71, 1609–1640 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spanier, J.: Quasi-Monte Carlo methods for particle transport problems. In: Niederreiter, H., Shiue, P.J.-S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 121–148. Springer, New York (1995)

    Chapter  Google Scholar 

Download references

Acknowledgements

P. Kritzer gratefully acknowledges the support of the Austrian Science Fund (FWF), Project P23389-N18. G. Leobacher gratefully acknowledges the support of the Austrian Science Fund (FWF), Project P21196. F. Pillichshammer is partially supported by the Austrian Science Fund (FWF), Project S9609, that is part of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.

The authors would like to thank Josef Dick, Frances Y. Kuo and Ian H. Sloan for their hospitality during the authors’ stay at the School of Mathematics and Statistics at the University of New South Wales in February 2012, where parts of this paper were written. Furthermore, the authors gratefully acknowledge the support of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kritzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kritzer, P., Leobacher, G., Pillichshammer, F. (2013). Component-by-Component Construction of Hybrid Point Sets Based on Hammersley and Lattice Point Sets. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_25

Download citation

Publish with us

Policies and ethics