Skip to main content

Numerical investigation of the elastic scattering of hydrogen (isotopes) and helium at graphite (0001) surfaces at beam energies of 1 to 4 eV using a split-step Fourier method

  • Regular Article
  • Chapter
  • First Online:
8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

  • 714 Accesses

Abstract

We report simulations of the elastic scattering of atomic hydrogen isotopes and helium beams from graphite (0001) surfaces in an energy range of 1–4 eV. To this aim, we numerically solve a time-dependent Schrö- dinger equation using a split-step Fourier method. The hydrogen- and helium-graphite potentials are derived from density functional theory calculations using a cluster model for the graphite surface. We observe that the elastic interaction of tritium and helium with graphite differs fundamentally. Whereas the wave packets in the helium beam are directed to the centers of the aromatic cycles constituting the hexagonal graphite lattice, they are directed toward the rings in case of the hydrogen beams. These observations emphasize the importance of swift chemical sputtering for the chemical erosion of graphite and provide a fundamental justification of the graphite peeling mechanism observed in molecular dynamics studies. Our investigations imply that wave packet studies, complementary to classical atomistic molecular dynamics simulations open another angle to the microscopic view on the physics underlying the sputtering of graphite exposed to hot plasma.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Electronic supplementary material The online version of this article (doi:10.1007/s00214-013-1337-9) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The ITER organization. see http://www.iter.org/

  2. Miyahara A, Tanabe T (1988) Graphite as plasma facing material. J Nucl Mater 155–157:49–57

    Article  Google Scholar 

  3. Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A (2009) Recent analysis of key plasma wall interactions issues for ITER. J Nucl Mater 390–391:1–9

    Article  Google Scholar 

  4. Federici G, Skinner CH, Brooks JN, Coad JP, Grisolia C, Haasz AA, Hassanein A, Philipps V, Pitcher CS, Roth J, Wampler WR, Whyte DG (2001) Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl Fusion 41:1967–2137

    Article  Google Scholar 

  5. Samm U (2008) Plasma-wall interaction in magnetically confined fusion plasmas. Trans Fusion Sci Technol 53:223–228

    CAS  Google Scholar 

  6. Philipps V (2006) Plasma-wall interaction, a key issue on the way to a steady state burning fusion device. Phys Scr T123:24–32

    Article  CAS  Google Scholar 

  7. Lipschultz B, Bonnin X, Counsell G, Kallenbach A, Kukushkin A, Krieger K, Leonard A, Loarte A, Neu R, Pitts RA, Rognlien T, Roth J, Skinner CH, Terry JL, Tsitrone E, Whyte D, Zweben S, Asakura N, Coster D, Doerner R, Dux R, Federici G, Fenstermacher M, Fundamenski W, Ghendrih P, Herrmann A, Hu J, Krasheninnikov S, Kirnev G, Kreter A, Kurnaev V, LaBombard B, Lisgo S, Nakano T, Ohno N, Pacher HD, Paley J, Pan Y, Pautasso G, Philipps V, Rohde V, Rudakov D, Stangeby P, Takamura S, Tanabe T, Yang Y, Zhu S (2007) Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER. Nucl Fusion 47:1189–1205

    Article  CAS  Google Scholar 

  8. Tanabe T (2010) Tritium issues in plasma wall interactions. AIP Conf Proc 1237:106–121

    Article  CAS  Google Scholar 

  9. Tanabe T (2006) On the possibility of ITER starting with full carbon. Fusion Eng Des 81:139–147

    Article  CAS  Google Scholar 

  10. Roth J, Tsitrone E, Loarte A (2008) Plasma-wall interaction: a complex combination of surface processes critical for thermonuclear fusion. J Phys Conf Ser 100:062003. doi:10.1088/1742- 6596/100/6/062003

    Article  Google Scholar 

  11. Nordlund K, Salonen E, Krasheninnikov S, Keinonen J (2006) Swift chemical sputtering of covalently bonded materials. Pure Appl Chem 78:1203–1211

    Article  CAS  Google Scholar 

  12. Traeskelin P, Nordlund K, Keinonen J (2006) H, He, Ne, Ar-bombardment of amorphous hydrocarbon structures. J Nucl Mater 357:1–8

    Article  CAS  Google Scholar 

  13. Traeskelin P, Saresoja O, Nordlund K (2008) Molecular dynamics simulations of C2, C2H, C2H2, C2H3, C2H4, C2H5, and C2H6 bombardment of diamond (111) surfaces. J Nucl Mater 375:270–274

    Article  CAS  Google Scholar 

  14. Krstic PS, Reinhold CO, Stuart SJ (2007) Chemical sputtering from amorphous carbon under bombardment by deuterium atoms and molecules. New J Phys 9:209/201–225

    Google Scholar 

  15. Stuart SJ, Krstic PS, Embry TA, Reinhold CO (2007) Methane production by deuterium impact at carbon surfaces. Nucl Instrum Methods Phys Res B 255:202–207

    Article  CAS  Google Scholar 

  16. Marian J, Zepeda-Rutz LA, Gilmer GH, Bringa EM, Rognlien T (2006) Simulations of carbon sputtering in amorphous hydrogenated samples. Phys Scr T124:65–69

    Article  CAS  Google Scholar 

  17. Alman DA, Ruzic DN (2003) Molecular dynamics calculation of carbon/hydrocarbon reflection coefficients on a hydrogenated graphite surface. J Nucl Mater 313–316:182–186

    Article  Google Scholar 

  18. Ito A, Nakamura H (2006) Molecular dynamics simulation of collisions between hydrogen and graphite. J Plasma Phys 72: 805–808

    Article  CAS  Google Scholar 

  19. Ito A, Nakamura H (2007) Molecular dynamics simulation of sputtering process of hydrogen and graphene sheets. Mol Simul 33:121–126

    Article  Google Scholar 

  20. Ito A, Nakamura H (2008) Hydrogen isotope sputtering of graphite by molecular dynamics simulation. Thin Solid Films 516:6553–6559

    Article  CAS  Google Scholar 

  21. Ito A, Nakamura H (2008) Molecular dynamics simulation of bombardment of hydrogen atoms on graphite surface. Commun Comput Phys 4:592–610

    Google Scholar 

  22. Ito A, Wang Y, Irle S, Morokuma K, Nakamura H (2009) Molecular dynamics simulation of hydrogen atom sputtering on the surface of graphite with defect and edge. J Nucl Mater 390–391:183–187

    Article  Google Scholar 

  23. Ito A, Ohya K, Inai K, Nakamura H (2010) Dependency of tritium retention in graphite on temperature control of molecular dynamics. Contrib Plasma Phys 50:464–469

    Article  CAS  Google Scholar 

  24. Ohya K, Mohara N, Inai K, Ito A, Nakamura H, Kirschner A, Borodin D (2010) Molecular dynamics and dynamic Monte Carlo studies of mixed materials and their impact on plasma wall interactions. Fusion Eng Des 85:1167–1172

    Article  CAS  Google Scholar 

  25. Saito S, Ito AM, Takayama A, Kenmotsu T, Nakamura H (2011) Hybrid simulation between molecular dynamics and binary collision approximation codes for hydrogen injection into carbon materials. J Nucl Mater 415:5208–5211

    Article  Google Scholar 

  26. Varga G (1999) Investigation of thermal energy atomic scattering from solid surfaces using the 3D time-dependent Schroedinger equation. Surf Sci 441:472–478

    Article  CAS  Google Scholar 

  27. Balazs E, Varga G, Fuestoess L (2001) Comparison of 3D classical and quantum mechanical He scattering on Rh(311). Surf Sci 482–485:1145–1151

    Article  Google Scholar 

  28. Varga G (2001) Computer simulated thermal energy atomic scattering on solid surfaces. Surf Sci 482–485:1152–1158

    Article  Google Scholar 

  29. Varga G (2002) Computer simulation by the quantum mechanical time-dependent wavepacket method, especially for atom/moleculesolid- surface interaction. J Phys Condens Matter 14:6081–6107

    Article  CAS  Google Scholar 

  30. Tribe L (2006) Wave packet calculations for helium scattering by a xenon monolayer. Chem Phys 327:468–473

    Article  CAS  Google Scholar 

  31. Sha X, Jackson B, Lemoine D, Lepetit B (2005) Quantum studies of H atom trapping on a graphite surface. J Chem Phys 122:014709/014701–014708

    Google Scholar 

  32. Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal 5:506–517

    Article  Google Scholar 

  33. Jahnke T, Lubich C (2000) Error bounds for exponential operator splittings. BIT 40:735–744

    Article  Google Scholar 

  34. Lubich C (2008) From quantum to classical molecular dynamics: reduced models and numerical analysis. European Mathematical Society (EMS), Zuerich

    Google Scholar 

  35. Huber SE, Mauracher A, Probst M. Permeation of low-Z atoms through carbon sheets: density functional theory study on energy barriers and deformation effects. arXiv:1201.4014v2 [physics. chem-ph]

    Google Scholar 

  36. Jug K, Bredow T (2004) Models for the treatment of crystalline solids and surfaces. J Comput Chem 25:1551–1567

    Article  CAS  Google Scholar 

  37. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  38. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  39. Chai J, Head-Gordon M (2008) Long-range corrected hybriddensity functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  40. Sha X, Jackson B (2002) First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf Sci 496:318–330

    Article  CAS  Google Scholar 

  41. Ferro Y, Brosser C, Allouche A (2004) Quantum study of hydrogen interaction with plasma-facing graphite and boron doped graphite surfaces. Phys Scr T108:76–79

    Article  CAS  Google Scholar 

  42. Ferro Y, Jelea A, Marinelli F, Brosset C, Allouche A (2005) Density functional theory and molecular dynamics studies of hydrogen interaction with plasma-facing graphite surfaces and the impact of boron doping. J Nucl Mater 337–339:897–901

    Article  Google Scholar 

  43. Jeloaica L, Sidis V (1999) DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem Phys Lett 300:157–162

    Article  CAS  Google Scholar 

  44. Zecho T, Guettler A, Sha X, Jackson B, Kueppers J (2002) Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface. J Chem Phys 117:8486–8492

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K,Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  46. Kayanuma M, Ikeshoji T, Ogawa H (2011) Theoretical study of hydrogen chemisorption to nitrogen-substituted graphene-like compounds. Bull Chem Soc Jpn 84:52–57

    Article  CAS  Google Scholar 

  47. Ehemann RC, Krstic PS, Dadras J, Kent PRC, Jakowski J (2012) Detection of hydrogen using graphene. Nanoscale Res Lett 7:198/ 191–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan E. Huber or Michael Probst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huber, S.E., Hell, T., Probst, M., Ostermann, A. (2014). Numerical investigation of the elastic scattering of hydrogen (isotopes) and helium at graphite (0001) surfaces at beam energies of 1 to 4 eV using a split-step Fourier method. In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_21

Download citation

Publish with us

Policies and ethics