Skip to main content

The Geometry of Newton’s and Einstein’s Theories

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

  • 5129 Accesses

Abstract

The aim of this paper is to present a simple, brief, mathematical discussion of the interplay between geometry and physics in the theories of Newton and Einstein. The reader will be assumed to have some familiarity with classical Newtonian theory, the ideas of special and general relativity theory (and differential geometry), and the axiomatic formulation of Euclidean geometry. An attempt will be made to describe the relationship between Galileo’s law of inertia (Newton’s first law) and Euclid’s geometry, which is based on the idea of Newtonian absolute time. Newton’s second law and classical gravitation theory will then be introduced through the elegant idea of Cartan and his space-time connection and space metric. This space metric will then be used to introduce Minkowski’s metric in special relativity and its subsequent generalization, by Einstein, to incorporate relativistic gravitational theory. The role of the principles of equivalence and covariance will also be discussed. Finally, a brief discussion of cosmology will be given. Stress will be laid on the (geometrical) concepts involved rather than the details of the mathematics, in so far as this is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FRWL:

Friedmann, Robertson, Walker, and Lemaître

References

  1. D. Hilbert: The Foundations of Geometry (Open Court, Chicago 1902)

    Google Scholar 

  2. R. Bonola: Non-Euclidean Geometry (Dover, New York 1955)

    Google Scholar 

  3. H. Meschkowski: Noneuclidean Geometry (Academic, New York and London 1964)

    Google Scholar 

  4. G.F.B. Riemann: On the hypotheses which lie at the foundation of geometry. In: From Kant to Hilbert. In: E. William 1996)

    Google Scholar 

  5. G.T. Kneebone: Mathematical Logic (Van Nostrand, London 1963)

    Google Scholar 

  6. L.M. Blumenthal: A Modern View of Geometry (Freeman, San Francisco 1961)

    Google Scholar 

  7. G.E. Martin: The Foundations of Geometry and the Non-Euclidean Plane (Intext Educational, New York 1975)

    Google Scholar 

  8. M.J. Greenburg: Euclidean and Non-Euclidean Geometries (Freeman, San Francisco 1973)

    Google Scholar 

  9. R. Hartshorne: Geometry: Euclid and Beyond (Springer, New York 2000)

    Google Scholar 

  10. H. Poincaré: Science and Hypothesis (Dover, New York 1952)

    Google Scholar 

  11. A. Einstein: Geometry and experience (Address to Prussian Academy of Sciences, 1921), reprinted in Sidelights on Relativity (Dover, 1983)

    Google Scholar 

  12. A. Trautman: The General Theory of Relativity, Report from the Conference on Relativity Theory, London (1965)

    Google Scholar 

  13. A. Trautman: Lectures in general relativity, Brandeis Summer Institute in Theoretical Physics (Prentice-Hall, Englewood Cliffs 1965)

    Google Scholar 

  14. E. Mach: The Science of mechanics (Open Court, La Salle 1960)

    Google Scholar 

  15. C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation (Freeman, San Francisco 1973)

    Google Scholar 

  16. E. Cartan: On Manifolds with an Affine Connection and The Theory of Relativity (Bibliopolis, Napoli 1986)

    Google Scholar 

  17. A. Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Physik 17, 132-145 (1905), translated in The Principle of Relativity (Dover, 1923), pp. 37–71

    Google Scholar 

  18. C.W. Kilmister: Special Theory of Relativity (Pergamon, Oxford New York 1970)

    Google Scholar 

  19. A. Pais: Subtle is the Lord (Oxford Univ. Press, Oxford 2005)

    Google Scholar 

  20. R.S. Shankland: The Michelson–Morley Experiment, Sci. Am. 211, 107–114 (1964)

    Google Scholar 

  21. V. Petkov (Ed.): Minkowski Spacetime: A Hundred Years Later (Springer, Dordrecht 2010)

    Google Scholar 

  22. C. Lanczos: The Variational principles of Mechanics (Univ. of Toronto Press, Toronto 1966)

    Google Scholar 

  23. H. Stephani: Relativity, 3rd edn. (Cambridge Univ. Press, Cambridge 2004)

    Google Scholar 

  24. J.L. Anderson: Covariance, invariance and equivalence: A viewpoint, Gen. Relativ. Gravit. 2, 161–172 (1971)

    Google Scholar 

  25. E. Kretschmann: Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie, Ann. Physik 53, 575 (1917)

    Google Scholar 

  26. A. Einstein: Die Grundlage der allgemeinen Relativitätstheorie, Ann. Physik 49, 769–822 (1916), translated in The Principle of Relativity (Dover, 1923), pp. 111–164

    Google Scholar 

  27. A. Einstein: The Meaning of Relativity (Methuen, Frome London 1967)

    Google Scholar 

  28. G.S. Hall: Symmetries and Curvature Structure in General Relativity (World Scientific, New Jersey 2004)

    Google Scholar 

  29. W.K. Clifford: On the space theory of matter (abstract), Proc. Camb. Philos. Soc. 2, 157 (1876)

    Google Scholar 

  30. Sir A. Eddington: The Mathematical Theory of Relativity (Cambridge Univ. Press, Cambridge 1965)

    Google Scholar 

  31. D. Lovelock: Mathematical Aspects of Variational Principles in the General Theory of Relativity D.Sc. Thesis (Univ. of Waterloo, Canada 1973)

    Google Scholar 

  32. G.S. Hall, D.P. Lonie: The principle of equivalence and projective structure in spacetimes, Class. Quantum Gravit. 24, 3617 (2007)

    Google Scholar 

  33. G.S. Hall, D.P. Lonie: Projective equivalence of Einstein spaces in general relativity, Class. Quantum Gravit. 26, 1250091–12500910 (2009)

    Google Scholar 

  34. N.J. Hicks: Notes on Differential Geoemetry (Van Nostrand, Princeton 1971)

    Google Scholar 

  35. A. Einstein: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber. Preuss. Akad. Wiss. (1917), translated in The Principle of Relativity (Dover, 1923) pp. 177–188

    Google Scholar 

  36. H. Bondi: Cosmology (Cambridge Univ. Press, Cambridge 1960)

    Google Scholar 

  37. R. d’Inverno: Introducing Einstein’s Relativity (Clarendon Press, Oxford 1992)

    Google Scholar 

  38. S.W. Hawking, G.F.R. Ellis: The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge 1973)

    Google Scholar 

  39. G.F.R. Ellis, R. Maartens, M.A.H. MacCallum: Relativistic Cosmology (Cambridge Univ. Press, Cambridge 2012)

    Google Scholar 

  40. J. Plebanski, A. Krasinski: An Introduction to General Relativity and Cosmology (Cambridge Univ. Press, Cambridge 2006)

    Google Scholar 

  41. G.S. Hall: Killing orbits and isotropy in general relativity, J. Appl. Computat. Math. 2, e130 (2013)

    Google Scholar 

  42. G.S. Hall: The global extension of local symmetries in general relativity, Class. Quantum Gravit. 6, 157 (1989)

    Google Scholar 

  43. K. Nomizu: On local and global existence of Killing vector fields, Ann. Math. 72, 105 (1960)

    Google Scholar 

  44. M.S. Longhair: The Cosmic Century (Cambridge Univ. Press, Cambridge 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham S. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hall, G.S. (2014). The Geometry of Newton’s and Einstein’s Theories. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics