Skip to main content

Regulation and Function of 5′-Nucleotidases

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Mammalian organs contain at least three different 5′-nucleotidases which favor AMP as substrate over other nucleotides by the criterion of Vmax/Km. These enzymes occur in plasma membrane, cytosol, and lysosomes. The plasma membrane enzyme has been purified to homogeneity, and its kinetic properties have been described in some detail. The enzyme shows a substantial preference for AMP over IMP [25].

Cytosolic 5′-nucleotidase from rabbit heart exhibits sigmoidal AMP saturation curves in the absence of activators. The enzyme is activated by ATP, which increases the apparent affinity of the enzyme for AMP without a change in Vmax. At saturating ATP, the AMP saturation curve becomes hyperbolic in shape. The cytosolic enzyme can be dissociated and separated into catalytic and regulatory proteins. The separated catalytic protein has a hyperbolic AMP saturation curve, i. e., it exhibits Michaelis-Menten kinetics. This form is slightly inhibited by ATP. When the catalytic and regulatory proteins are mixed together, the original regulatory behavior is restored.

A lysosomal 5′-nucleotidase has been partially purified from rat liver. This enzyme too shows a preference for AMP over other nucleoside monophosphates; however, it is inhibited by ATP. The lysosomal enzyme differs in kinetic properties from various other lysosomal phosphatases and 5′-nucleotidases that have been described previously; in particular, it has no activity with 2′-and 3′-adenosine monophosphates. It shows some activity towards p-nitrophenyl phosphate, but with a much lower Vmax than AMP.

Polyclonal antibody to ecto-5′-nucleotidase causes complete inhibition of the ectoenzyme, but has no effect on the cytosolic and lysosomal 5′-nucleotidases. The function of the three types of 5′-nucleotidase is discussed in terms of their localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsenis C, Touster O (1968) Purification and properties of an acid nucleotidase from rat liver lysosomes. J Biol Chem 243:5702–5708

    PubMed  CAS  Google Scholar 

  2. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  3. Berne RM, Knabb RM, Ely SW, Rubio R (1984) Adenosine in the local regulation of blood flow: a brief overview. Fed Proc 42:3136–3142

    Google Scholar 

  4. Berry JK, Madrid-Marina V, Fox IH (1986) Purification and properties of human placental cytoplasmic 5′-nucleotidase. J Biol Chem 261:449–452

    CAS  Google Scholar 

  5. Burger RM, Lowenstein JM (1970) Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine. J Biol Chem 245:6274–6280

    PubMed  CAS  Google Scholar 

  6. Burger RM, Lowenstein JM (1975) 5′-Nucleotidase from smooth muscle of small intestine and from brain. Inhibition by nucleotides. Biochemistry 14:2362–2366

    Article  PubMed  CAS  Google Scholar 

  7. Camici M, Fini C, Ipata PL (1985) Isolation and kinetic properties of 5′-nucleotidase from guinea pig skeletal muscle. Biochim Biophys Acta 840:6–12

    Article  PubMed  CAS  Google Scholar 

  8. Degenring FH, Curnish RR, Rubio R, Berne RM (1976) Effect of dipyridamole on myocardial adenosine metabolism and coronary flow in hypoxia and reactive hyperemia in the isolated perfused guinea pig heart. J Mol and Cell Cardiol 8:877–888

    Article  CAS  Google Scholar 

  9. Dobson JG Jr (1983) Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res 52:151–160

    PubMed  CAS  Google Scholar 

  10. Frick GP, Lowenstein JM (1976) Studies of 5′-nucleotidase in perfused rat heart including measurements of the enzyme in perfused skeletal muscle and liver. J Biol Chem 251:6372–6378

    PubMed  CAS  Google Scholar 

  11. Gibson WB, Drummond GI (1972) Properties of 5′-nucleotidase from avian heart. Biochemistry 11:223–229

    Article  PubMed  CAS  Google Scholar 

  12. Harb J, Meflah K, Duflos Y, Bernard S (1983) Purification and properties of bovine liver plasma membrane 5′-nucleotidase. Eur J Biochem 137:131–138

    Article  PubMed  CAS  Google Scholar 

  13. Itoh R (1981a) Purification and some properties of cytosol 5′-nucleotidase from rat liver. Biochim Biophys Acta 657:402–410

    PubMed  CAS  Google Scholar 

  14. Itoh R (1981b) Regulation of cytosol 5′-nucleotidase by adenylate energy charge. Biochim Biophys Acta 659:31–37

    PubMed  CAS  Google Scholar 

  15. Itoh R (1982) Studies on some molecular properties of cytosol 5′-nucleotidase from rat liver. Biochim Biophys Acta 716:110–113

    Article  PubMed  CAS  Google Scholar 

  16. Itoh R, Oka J (1985) Evidence for existence of a cytosol 5′-nucleotidase in chicken heart: comparison of some properties of heart and liver enzymes. Comp Biochem Physiol [B] 81:159–163

    Article  CAS  Google Scholar 

  17. Itoh R, Oka J, Ozasa H (1986) Regulation of rat heart cytosol 5′-nucleotidase by adenylate energy charge. Biochem J 235:847–851

    PubMed  CAS  Google Scholar 

  18. Leighton F, Poole B, Beaufay H, Baudhuin P, Coffee JM, Fowler S, DeDuve C (1968) The large scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. J Cell Biol 37:482–513

    Article  PubMed  CAS  Google Scholar 

  19. Liang C-S, Lowenstein JM (1978) Metabolic control of the circulation: effects of acetate and pyruvate. J Clin Invest 62:1029–1038

    Article  PubMed  CAS  Google Scholar 

  20. Lineweaver H, Burk D (1934) The dissociation constant of nitrogen-nitrogenase in azobacter. J Am Chem Soc 56:225–230

    Article  CAS  Google Scholar 

  21. Lowenstein JM, Yu M-K, Naito Y (1983) Regulation of adenosine metabolism by 5′-nucleotidase. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, Boston, pp 117–129

    Chapter  Google Scholar 

  22. Madrid-Marina V, Fox IH (1986) Human placental cytoplasmic 5′-nucleotidase: kinetic properties and inhibition. J Biol Chem 261:444–452

    PubMed  CAS  Google Scholar 

  23. Maguire GA, Luzio JP (1985) The presence and orientation of ecto-5′-nucleotidase in rat liver lysosomes. FEBS Lett 180:122–126

    Article  PubMed  CAS  Google Scholar 

  24. Montero JM, Fes JB (1982) Purification and characterization of bovine brain 5′-nucleotidase. J Neurochem 39:982–989

    Article  PubMed  CAS  Google Scholar 

  25. Naito Y, Lowenstein JM (1981) 5′-Nueleotidase from rat heart. Biochemistry 20:5188–5194

    Article  PubMed  CAS  Google Scholar 

  26. Naito Y, Lowenstein JM (1985) 5′-Nucleotidase from rat heart membranes. Inhibition by adenine nucleotides and related compounds. Biochem J 226:645–651

    PubMed  CAS  Google Scholar 

  27. Naito Y, Tsushima K (1976) Cytosol 5′-nucleotidase from chicken liver. Purification and some properties. Biochim Biophys Acta 438:159–168

    PubMed  CAS  Google Scholar 

  28. Nishiki K, Erecińska M, Wilson DF (1978) Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart. Am J Physiol 234:C73–C81

    PubMed  CAS  Google Scholar 

  29. Pletsch QA, Coffey JW (1972) Studies on 5′-nucleotidases of rat liver. Biochim Biophys Acta 276:192–205

    PubMed  CAS  Google Scholar 

  30. Rubio R, Berne RM, Dobson JG Jr (1973) Sites of adenosine production in cardiac and skeletal muscle. Am J Physiol 225:938–953

    PubMed  CAS  Google Scholar 

  31. Sanui H (1974) Measurement of inorganic orthophosphate in biological materials: extraction properties of butyl acetate. Anal Biochem 60:489–504

    Article  PubMed  CAS  Google Scholar 

  32. Schnaitman C, Greenwalt J (1968) Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 38:158–175

    Article  PubMed  CAS  Google Scholar 

  33. Schrader J, Gerlach E (1976) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch 367:129–135

    Article  PubMed  CAS  Google Scholar 

  34. Schultz V, Lowenstein JM (1978) The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J Biol Chem 253:1938–1943

    PubMed  CAS  Google Scholar 

  35. Stanley KK, Burke B, Pitt T, Siddle K, Luzio JP (1983) Localization of 5′-nucleotidase in a rat liver cell line using monoclonal antibody and indirect immunofluorescent labelling. Exp Cell Res 144:39–46

    Article  PubMed  CAS  Google Scholar 

  36. Widnell CC, Schneider Y-J, Baudhuin P, Trauet A (1982) Evidence for a continual exchange of 5′-nucleotidase between the cell surface and cytoplasmic membranes in cultured rat fibroblasts. Cell 28:61–70

    Article  PubMed  CAS  Google Scholar 

  37. Williamson JR (1965) Glycolytic control mechanisms. J biol Chem 240:2308–2321

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collinson, A.R., Peuhkurinen, K.J., Lowenstein, J.M. (1987). Regulation and Function of 5′-Nucleotidases. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics