Skip to main content

Formation of Adenosine by Vascular Endothelium: a Homeostatic and Antithrombogenic Mechanism?

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Under physiological conditions, concentrations of adenosine in arterial and venous blood are very similar, although the nucleoside is rapidly metabolized by blood cells and the vascular endothelium. In order to characterize the possible regulatory role of endothelial cells in the homeostasis of adenosine in the blood, studies concerning metabolism of adenosine and adenine nucleotides were carried out on cultured endothelial cells of various origin and on different vessel preparations.

Micro- and macrovascular endothelial cells are capable of both a continuous uptake and release of adenosine. Adenosine taken up can be incorporated into adenine nucleotides or catabolized, the relative proportions depending on its concentration. Adenosine released from the endothelium is preferentially derived from the breakdown of adenine nucleotides. All endothelial cells exhibit extraordinarily active ectonucleotidases (ATPase, ADPase, 5′-nucleotidase), whereby also extracellular nucleotides are rapidly degraded to adenosine. This adenosine can accumulate extracellularly, mainly in cultures of macrovascular endothelial cells owing to their slower rate of adenosine uptake and metabolism. Similar observations pertain to isolated perfused segments of rabbit caval veins with intact endothelium. In vessel preparations denuded of endothelium extracellular adenine nucleotide degradation yields far more inosine than adenosine.

The net production of adenosine from intra- and extracellular adenine nucleotides by the vascular endothelium in vivo must exceed endothelial uptake of the nucleoside. Otherwise, similar arterial and venous plasma levels could not be maintained, since adenosine is also taken up and metabolized by red blood cells. Based on these considerations one has to postulate a concentration gradient of adenosine to exist between the unstirred plasma layer at the endothelial surface and the central blood stream. We propose that adenosine of endothelial origin — intra- and extracellularly formed and highly concentrated at the luminal surface — may constitute an important antiaggregatory mechanism, which is part of the well-known antithrombogenicity of an intact endothelial lining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker BF, Gerlach E (1985) Uric acid formed in the coronary endothelium is the major adenine nucleotide catabolite released from isolated perfused guinea pig hearts. Pflügers Arch 405: Suppl 2, R10

    Google Scholar 

  2. Becker BF, Gerlach E (1986) Uric acid, the major adenine nucleotide catabolite released from isolated perfused guinea pig hearts, is formed in the coronary endothelium. J Mol Cell Cardiol 18: Suppl 1, 157

    Google Scholar 

  3. Becker BF, Gerlach E (1986) Uric acid, the major catabolite of cardiac adenine nucleotides and adenosine, originates in the coronary endothelium. This volume, pp 209-223

    Google Scholar 

  4. Böck M, Möller A, Nees S, Gerlach E (1984) Extracellular degradation of adenine nucleotides by coronary endothelial cells and vascular endothelium of other origin. Pflügers Arch 402: Suppl R20

    Google Scholar 

  5. Böck M, Nees S, Möller A, Gerlach E (1985) Extrazellulärer Abbau von Adeninnukleotiden an Endothelzellen aus verschiedenen Gefäßabschnitten und im Vollblut. Z Kardiol 74: Suppl 3,20

    Google Scholar 

  6. Born GVR, Cross MJ (1963) The aggregation of blood platelets. J Physiol 168:178–195

    PubMed  CAS  Google Scholar 

  7. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) A new function for adenosine: protection of vascular endothelial cells from neutrophil-mediated injury. This volume, pp 299-308

    Google Scholar 

  8. Crutchley DJ, Ryan US, Ryan JW (1980) Effects of aspirin and dipyridamole on the degradation of adenosine diphosphate by cultured cells derived from bovine pulmonary artery. J Clin Invest 66:29–35

    Article  PubMed  CAS  Google Scholar 

  9. Des Rosiers C, Nees S, Gerlach E (1985) Purin-Stoffwechsel in kultivierten Endothelzellen verschiedener vaskulärer Herkunft. Z Kardiol 74: Suppl. 3,67

    Google Scholar 

  10. Deussen A, Möser G, Schrader J (1986) Contribution of coronary endothelial cells to cardiac adenosine production. Pflügers Arch 406:608–614

    Article  PubMed  CAS  Google Scholar 

  11. Dosne AM, Bodevin E (1983) Purine release from [14C]adenine-labelled endothelial cells: reduction by dipyridamole. Mol Physiol 3:175–181

    CAS  Google Scholar 

  12. Gerlach E, Nees S, Becker BF (1985) The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 80:459–474

    Article  PubMed  CAS  Google Scholar 

  13. Hellewell PG, Pearson JD (1983) Metabolism of circulating adenosine by the porcine isolated perfused lung. Circ Res 53:1–7

    PubMed  CAS  Google Scholar 

  14. Jaffe EA (1985) Physiologic functions of normal endothelial cells. In: Lee KT (ed) Atherosclerosis. Ann NY Acad Sci 454:279–291

    Google Scholar 

  15. Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW (1981) Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25:67–82

    Article  PubMed  CAS  Google Scholar 

  16. Nees S, Gerlach E (1983) Adenine nucleotides and adenosine metabolism in cultured coronary endothelial cells: formation and release of adenine compounds and possible functional implications. In: Berne RM, Rall TN, Rubio R (eds) Regulatory function of adenosine. NijhofT, Boston, pp 347–355

    Chapter  Google Scholar 

  17. Nees S, Gerbes AL, Gerlach E (1981) Isolation, identification, and continuous culture of coronary endothelial cells from guinea pig hearts. Eur J Cell Biol 24:287–297

    PubMed  CAS  Google Scholar 

  18. Nees S, Böck M, Herzog V, Becker BF, Des Rosiers C, Gerlach E (1985) The adenine nucleotide metabolism of the coronary endothelium: implications for the regulation of coronary flow by adenosine. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL, Oxford-Washington DC, pp 419–436

    Google Scholar 

  19. Nees S, Herzog V, Becker BF, Böck M, Des Rosiers C, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Article  PubMed  CAS  Google Scholar 

  20. Pearson JD, Gordon JL (1985) Nucleotide metabolism by endothelium. Annu Rev Physiol 47:617–627

    Article  PubMed  CAS  Google Scholar 

  21. Pearson JD, Coade S (1986) Kinetics of endothelial cell ectonucleotidases. This volume, pp 145-154

    Google Scholar 

  22. Pearson JD, Carleton JS, Gordon JL (1980) Metabolism of adenine nucleotides by ectoenzy-mes of vascular endothelial and smooth-muscle cells in culture. Biochem J 190:421–429

    PubMed  CAS  Google Scholar 

  23. Plageman PGW, Wohlhüter RM, Kraupp M (1985) Adenosine uptake, transport, and metabolism in human erythrocytes. J Cell Physiol 125:330–336

    Article  Google Scholar 

  24. Ryan US (1986) Metabolic activity of pulmonary endothelium: modulations of structure and function. Annu Rev Physiol 48:263–272

    Article  PubMed  CAS  Google Scholar 

  25. Sollevi A, Lagerkranser M, Andreen M, Irestedt L (1984) Relationship between arterial and venous adenosine levels and vasodilatation during ATP-and adenosine-infusion in dogs. Acta Physiol Scand 120:171–176

    Article  PubMed  CAS  Google Scholar 

  26. Sollevi A, Torsell L, Öwall A, Edlund A, Lagerkranser M (1986) Levels and cardiovascular effects of adenosine in humans. This volume, pp 599-613

    Google Scholar 

  27. Stiegler H, Klug M, Nees S (1986) Metabolism of adenine nucleotides and adenosine in isolated perfused v. cava segments of rabbits. Pflügers Arch 407: Suppl 1, S40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerlach, E., Becker, B.F., Nees, S. (1987). Formation of Adenosine by Vascular Endothelium: a Homeostatic and Antithrombogenic Mechanism?. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics