Skip to main content

Multidimensional Modeling of Flow and Heat Transfer During the Intake and Compression Processes in a Motored Engine Cylinder

  • Chapter
Laser Diagnostics and Modeling of Combustion
  • 263 Accesses

Abstract

Computer-based multidimensional modeling for in-cylinder processes is rapidly developing. The objective is a method of obtaining detailed velocity and temperature information which covers the entire space in a combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Gosman, R.J.R. Johns, and A.P. Watkins, Combustion Modeling in Reciprocating Engines, ed. J.N. Mattavi and C.A. Amann, pp.69–129, Plenum Press, New York, 1980.

    Google Scholar 

  2. A.D. Gosman, and R.J.R. Johns, Development of a Predictive Tool for In-Cylinder Gas Motion in Engines, SAE Paper 780315, 1978.

    Google Scholar 

  3. A.D. Gosman, and P.S. Harvey, Computer Analysis of Fuel Mixing and Combustion in an Axisymmetric D. I. Diesel, SAE Paper 820036, 1982.

    Google Scholar 

  4. S.H. El Tahry, A Numerical Study on the Effects of Fluid Motion at Inlet-Valve Closure on Subsequent Fluid Motion in a Motored Engine, SAE Paper 820035, 1982.

    Google Scholar 

  5. M. Ikegami, K. Horibe, and G. Komatsu, Numerical Simulation of Flows in an Engine Cylinder (2nd Report), Trans. JSME, vol.51, No. 468, pp. 2625–2702, 1985.

    Google Scholar 

  6. M. Ikegami, Y. Kidoguchi, and K. Nishiwaki, A Multidimensional Model Prediction of Heat Transfer in Non-Fired Engines, SAE Paper 860467, 1986.

    Google Scholar 

  7. T. Kondoh, A. Fukumoto, K. Ohsawa, and Y. Ohkubo, An Assessment of a Multi-Dimensional Numerical Method to Predict the Flow in Internal Combustion Engines, SAE Paper 850500, 1985.

    Google Scholar 

  8. R. Diwaker, Assessment of the Ability of a Multi-Dimensional Computer Code to Model Combustion in a Homogeneous-Charge Engine, SAE Paper 840230, 1984.

    Google Scholar 

  9. T. Adachi, S-Kato, and H. Tsujiyama, Numerical Analysis of Scavenging Flow in a Two-Cycle Internal Combustion Engine, ASME, the Winter Annual Meeting, pp. 29-34, 1982.

    Google Scholar 

  10. A.D. Gosman, Y.Y. Tsui, and C. Verifidas, Flow in a Model Engine with a Shrouded Valve-Combined Experimental and Computational Study, SAE paper 850498, 1985.

    Google Scholar 

  11. M. Ikegami, G. Komatsu, and K. Nishiwaki, Numerical Simulation of Flow in an Engine Cylinder (1st Report), Trans. JSME, vol.51, No. 466, pp. 1933–1940, 1985.

    Article  Google Scholar 

  12. M. Ikegami, G. Komatsu, and K. Nishiwaki, Numerical Simulation of Flow in an Engine Cylinder (1st Report), Bulletin of JSME, vol.29, No. 248, pp. 508–515, 1986.

    Article  Google Scholar 

  13. K. Nishiwaki, G. Komatsu, and M. Ikegami, Numerical Prediction of Fluid Motion in an Internal Combustion Engine During Intake Process, Trans. JSME Ser. B, vol.51, No. 470, pp. 3223–3231, 1985.

    Article  Google Scholar 

  14. K. Nishiwaki, Prediction of Three-Dimensiona1 Fluid Motion During Intake Process and Swirl Ratios in Four-Cycle Engines, International Symposium on Diagnostics and Modeling of Combustion in Reciprocating Engines, Sept., 1985, Tokyo, Proceedings, pp. 285-294.

    Google Scholar 

  15. T. Wakisaka, Y. Shimamoto, Y. Ishiki, and T. Shibata, Numerical Simulation of Gas Flow in the Cylinders of Four-Stroke Cycle Engines (1st Report), Trans. JSME Ser. B, vol.52, No. 476, pp. 1555–1564, 1986.

    Article  Google Scholar 

  16. W. Brandstatter, R.J.R. Johns, and G. Wigley, The Effect of Inlet Port Geometry on In-Cylinder Flow Structure, SAE Paper 850499, 1985.

    Google Scholar 

  17. T. Yamada, T. Inoue, A. Yoshimatsu, T. Hiramatsu, and M. Konishi, In-Cylinder Gas Motion of Multivalve Engine-Three Dimensional Numerical Simulation, SAE Paper 860465, 1986.

    Google Scholar 

  18. M. Kojima, and H. Takata, Numerical Analysis of Flows in Reciprocating Engines, Trans. JSME Ser. B, vol.51, No. 471, pp. 3804–3809, 1985.

    Article  Google Scholar 

  19. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, pp. 126-131, 1980.

    Google Scholar 

  20. N.N. Mansour, Flows in Internal Combustion Engines, ASME, Winter Annual Meeting, Proceeding, p. 39, 1982.

    Google Scholar 

  21. G. Komatsu, S. Sirae, and T. Hosokawa, Flow Visualization of the Producing Process of Induction Swirl Using a Water Model, Trans. JSME Ser. B, vol.51, No. 472, pp. 4102–4108, 1985.

    Article  Google Scholar 

  22. Y. Hamamoto, E. Tomita, H. Mitsuba, and Y. Kataoka, Measurements of Swirling Velocities in a Four-Stroke Engine, JSME Ckugoku-Shikoku Section, The 23rd Annual Meeting, Preprint No.855-1, pp.166-168, 1985.

    Google Scholar 

  23. Y. Hamamoto, Private Communication, January, 1986.

    Google Scholar 

  24. K. Dao, O.A. Uyehara, and P.S. Myers, Heat Transfer Rates at Gas-Wall Interfaces in a Motored Piston Engine, SAE Paper 730632, 1973.

    Google Scholar 

  25. K. Dao, Ph. D. Thesis, University of Wisconsin-Madison, 1972.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishiwaki, K. (1987). Multidimensional Modeling of Flow and Heat Transfer During the Intake and Compression Processes in a Motored Engine Cylinder. In: Iinuma, K., Ohsawa, T., Asanuma, T., Doi, J. (eds) Laser Diagnostics and Modeling of Combustion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45635-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45635-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45637-4

  • Online ISBN: 978-3-642-45635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics