Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 107))

Abstract

To begin with, let us recall a well known separation result for a stochastic linear regulator problem [6],[9],[I]. Let (Ω,P) be the underlying probability space and consider the following system:

$$\begin{gathered} dx(t,w) = [A(t)x(t,w) + B(t)u(t,w)]dt + F(t)dW(t,w), \hfill \\ x(0,w) = {x_0}(w), \hfill \\ dy(t,w) = C(t)x(t,w)dt + G(t)dW(t,w),y(0,w) = 0, \hfill \\ 0 \leqslant t \leqslant {t_1}, \hfill \\ \end{gathered} $$
((1.1))

where x, y, u correspond to state, observation and control processes respectively. W(t,ω) is a Wiener process, the matrices A, B,... are, say, continuous in t and of appropriate dimensions, X 0 is a r.v. independent of W(t,ω), t ≥ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnan, A, V. Stochastic Differential Systems I, Springer Verlag, Berlin 1973.

    Book  MATH  Google Scholar 

  2. Balakrishnan, A. V. “Stochastic Control: A Function Space Approach” SIAM J. Control, Vol. 10, No. 2,pp.285–297, May 1972.

    Article  MathSciNet  MATH  Google Scholar 

  3. Balakrishnan, A. V. “A Note on the Strusture of Optimal Stochastic Controls,” Inter. J. Appl. Math. Opt., Vol. 1, No. 1, 1974.

    Google Scholar 

  4. Beneš, V. E. “Girsanov Functionals and Optimal Bang-Bang Laws for Final Value Stochastic Control,” to be published.

    Google Scholar 

  5. Beneš, V. E. “Existence of Optimal Stochastic Control Laws,” SIAM J. Control, Vol.9, No. 3, pp.446–472, August 1971.

    Article  MathSciNet  MATH  Google Scholar 

  6. Joseph, P. D. and J. T. TOU. “On Linear Control Theory”, AIEE Trans. Appl. and Ind., Part II, Vol. 80, pp.193–196, 1961.

    Google Scholar 

  7. McKean, Jr., H. P. Stochastic Integrals, AP, New York, 1969.

    Google Scholar 

  8. Shiryaev, A.V. and R. S. Lipcer. “On the Absolute Continuity of Measures ...”, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 36 (1972), No.4

    Google Scholar 

  9. Wonham, W. M. “Random Differential Equation in Control Theory”, in Probabilistic Methods in Appl. Math., Vol.2, pp.131–212, AP 1970.

    Google Scholar 

  10. Zvonkin, A. K. “A Drift Annulating Phase Space Map for a Diffusion” Matematiceskii Sbornik, Tom 93(135), No.1, 1974,(in russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Ruzicka, J. (1975). On a Class of Stochastic Bang-Bang Control Problems. In: Bensoussan, A., Lions, J.L. (eds) Control Theory, Numerical Methods and Computer Systems Modelling. Lecture Notes in Economics and Mathematical Systems, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46317-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46317-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07020-7

  • Online ISBN: 978-3-642-46317-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics