Skip to main content

A Hilbert Space Approach to Some Flow Problems

  • Chapter
Recent Developments in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 429))

Abstract

This note presents a novel Hilbert space approach based on the Green-Stokes formula to some continuous transport flow problems in n-dimensional domains. Firstly an analogue of Hoffman’s feasibility theorem is given in this setting. Then well-posedness and duality results for related nonlinear flow optimization problems are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis (J. Wiley, New York, 1984 ).

    Google Scholar 

  2. E.J. Anderson and P. Nash, Linear Programming in Infinite - Dimensional Spaces (J. Wiley, Chichester, 1987 ).

    Google Scholar 

  3. M.J. Beckmann and T. Puu, Spatial Economics: Density, Potential, and Flow ( North-Holland, Amsterdam, 1985 ).

    Google Scholar 

  4. M.J. Beckmann, “A continuous model of transportation”, Econometrica 20 (1952) 643–660.

    Article  Google Scholar 

  5. M.J. Beckmann, “Equilibrium and stability in a continuous space market”, Operations Research Verfahren 14 (1976) 48–63.

    Google Scholar 

  6. W. Blum, “An approximation for a continuous max-flow problem,” Math. of Oper. Res. 18 (1993) 98–115.

    Article  Google Scholar 

  7. S. Dafermos, “Continuum modelling of transportation networks”, Transportation Res. 14B (1980) 295–301.

    Article  Google Scholar 

  8. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3, Spectral Theory and Applications, (Springer-Verlag, Berlin, New York, 1993 ).

    Google Scholar 

  9. A. L. Dontchev and T. Zolezzi, Well Posed Optimization Problems, Lecture Notes in Math. 1543 (Springer-Verlag, Berlin, New York, 1993 ).

    Google Scholar 

  10. L. R. Jr. Ford and D. R. Fulkerson, Flows in Networks, (Princeton Univ. Press, Princeton, New Jersey, 1962 ).

    Google Scholar 

  11. V. Girault and P.-A. Raviart, Finite Element Approximation of the NavierStokes Equations, Lecture Notes in Math., 749 ( Springer-Verlag, Berlin, New York, 1981 ).

    Google Scholar 

  12. A. J. Hoffman, “Some recent application of the theory of linear inequalities to extremal combinatorial analysis,” Proc. Sympos. Appl. Math. 10 (1960).

    Google Scholar 

  13. M. Iri, Network Flow, Transportation and Scheduling ( Academic Press, New York, 1969 ).

    Google Scholar 

  14. M. Iri, “Theory of flows in continua as approximation to flows in networks”, in: A. Prekopa, Survey of Mathematical Programming, Vol. 2 ( North-Holland, Amsterdam, 1980 ) 263–278.

    Google Scholar 

  15. L. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk SSSR 37 (1942), translated into English in Management Sci. 5: 1–4.

    Google Scholar 

  16. R. Klötzler, “Dualität bei Steuerungsproblemen und zugeordneten Flußproblemen II”, Z. Anal. Anwendungen 2 (1983) 57–74.

    Google Scholar 

  17. R. Klötzler, “Flußoptimierung”, Z. Angew. Math. Mech. 74 (1994) T591 - T593.

    Google Scholar 

  18. R. Klötzler, “Transportfluß-Optimierung”, GMOOR-Newsletter 2 (1994) 3–10.

    Google Scholar 

  19. W. Krabs, Optimization and Approximation (J. Wiley, Chichester, 1979 ).

    Google Scholar 

  20. A. Maugeri, “New classes of variational inequalities and applications to equilibrium problems”, Rend. Accad. Naz. 11 (1987) 277–284.

    Google Scholar 

  21. J. Neóas, Les Méthodes Directes en Théorie des Équations Elliptiques, (Academia Masson, Prague, Paris, 1967 ).

    Google Scholar 

  22. R. Nozawa, “Max-flow min-cut theorem in an anisotropic network”, Osaka J. Math. 27 (1990) 805–842.

    Google Scholar 

  23. M.M. Neumann, “The theorem of Gale for infinite networks and applications”, in: E.J. Anderson and A.B. Philpott, eds., Infinite Programming, Lecture Notes in Econom. and Math. Systems., 259 ( Springer, Berlin, New York, 1984 ) 154–171.

    Google Scholar 

  24. W. Oettli and M. Yamasaki, “On Gale’s feasibility theorem for certain infinite networks”, Arch. Math. 62 (1994) 378–384.

    Article  Google Scholar 

  25. W. Oettli and M. Yamasaki, “Existence of feasible potentials on infinite networks”, Preprint, 1994.

    Google Scholar 

  26. G. Strang, “Maximal flow through a domain”, Math. Programming 26 (1983) 123–143.

    Article  Google Scholar 

  27. A. Taguchi and M. Iri, “Continuum approximation to dense networks and its application to the analysis of urban road networks”, Math. Programming Study, 20 (1982) 178–217.

    Article  Google Scholar 

  28. F. Treves, Basic Linear Partial Differential Equations ( Academic Press, New York, 1975 ).

    Google Scholar 

  29. M.M. Vainberg, Variational Methods for the Study of Non-linear Operators ( Holden-Day, San Francisco, 1964 ).

    Google Scholar 

  30. M. Yamasaki, “Extremum problems on an infinite network,” Hiroshima Math. J. 5 (1975) 223–250.

    Google Scholar 

  31. W. von Wahl, “On necessary and sufficient conditions for the solvability of the equations rotu = γ and divu = ε with u vanishing on the boundary,” in: J.G. Heywood et al., eds., The Navier-Stokes Equations–Theory and Numerical Methods, Lecture Notes in Math., 1431 (Springer, Berlin, New York, 1990 ) 152–157.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gwinner, J. (1995). A Hilbert Space Approach to Some Flow Problems. In: Durier, R., Michelot, C. (eds) Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46823-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46823-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60041-1

  • Online ISBN: 978-3-642-46823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics