Skip to main content

Zusammenfassung

Vitamin A-Säure und chemisch analoge Retinoide haben im Tierexperiment zwei onkologisch relevante Wirkungen: Sie reduzieren die Tumorinzidenz bei Tieren, die mit chemischen Karzinogenen behandelt werden [5, 15, 16] und führen bei einigen bereits etablierten Tumoren außerdem zur Regression [2, 3, 7, 17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bashor MM, Toft DO, Chytil F (1973) In vitro binding of Retinol to rat-tissue components. Proc Natl Acad Sci USA 70: 3483–3487

    PubMed  CAS  Google Scholar 

  2. Bollag W (1971) Therapy of chemically induced skin tumors of mice with vitamin A palmitate and vitamin A acid. Experientia 27: 90–92

    PubMed  CAS  Google Scholar 

  3. Bollag W (1974) Therapeutic effects of an aromatic retinoic acid analog on chemically induced skin papillomas and carcinomas of mice. Eur J Cancer 10: 731–737

    PubMed  CAS  Google Scholar 

  4. Brookes P (1966) Quantitative aspects of the reaction of some carcinogens with nucleic acids and the possible significance of such reactions in the process of carcinogenesis. Cancer Res 26: 1994–2003

    PubMed  CAS  Google Scholar 

  5. Chu EW, Malmgren RA (1965) An inhibitory effect of vitamin A on the induction of tumors of the forestomach and cervix in the Syrian hamster by carcinogenic polycyclic hydrocarbons. Cancer Res 25: 884–895

    PubMed  CAS  Google Scholar 

  6. Chytil F, Ong DE (1976) Mediation of retinoic acid-induced growth and antitumour activity. Nature 260: 49–51

    PubMed  CAS  Google Scholar 

  7. Felix EL, Loyd B, Cohen MH (1975) Inhibition of the growth and development of a transplantable murine melanoma by vitamin A. Science 181: 886–888

    Google Scholar 

  8. Jetten AM, Jetten MER (1979) Possible role of retinoic acid binding protein in retinoid stimulation of embryonal carcinoma cell differentiation. Nature 278: 180–182

    PubMed  CAS  Google Scholar 

  9. Miller JA (1970) Carcinogenesis by chemicals: An overview G.H.A. Clowes memorial lecture. Cancer Res 30: 559–576

    PubMed  CAS  Google Scholar 

  10. Nebert DW, Gelboin HV (1968) Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J Biol Chem 243: 6242–6249

    Google Scholar 

  11. Nebert DW, Gelboin HV (1968) Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. II. Cellular responses during enzyme induction. J Biol Chem 243: 6250–6261

    Google Scholar 

  12. Ong DE, Chytil F (1975) Specificity of cellular retinol-binding protein for compounds with vitamin A activity. Nature 255: 74–75

    PubMed  CAS  Google Scholar 

  13. Ong DE, Page DL, Chytil F (1975) Retinoic acid-binding protein: Occurance in human tumors. Science 190: 60–61

    Google Scholar 

  14. Rüdiger HW, Marxen J, Kohl F-V, Melderis H, Wiehert P v (1979) Metabolism and formation of DNA adducts of benzo(a)pyrene in human diploid fibroblasts. Cancer Res 39: 1083–1088

    PubMed  Google Scholar 

  15. Saffiotti U, Montesano R, Sellakumar AR, Borg SA (1967) Experimental cancer of the lung. Inhibition by vitamin A of the induction of tracheobronchial squamous metaplasia and squamous cell tumors. Cancer 20: 857–864

    Google Scholar 

  16. Sporn MB, Dunlop NM, Newton DL, Smith JM (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35: 1332–1338

    PubMed  CAS  Google Scholar 

  17. Trown PW, Buck MJ, Hansen R (1976) Inhibition of growth and regression of a transplantable rat chondrosarcoma by three retinoids. Cancer Treat Rep 60: 1647–1653

    PubMed  CAS  Google Scholar 

  18. Trown PW, Palleroni AV, Bohoslawec O, Richelo BN, Halpern JM, Gizzi N, Geiger R, Lewinski C, Machlin LJ, Jetten A, Jetten MER (1980) Relationship between binding affinities to cellular retinoic acid-binding protein and in vivo and in vitro properties for 18 retinoids. Cancer Res 40: 212–220

    PubMed  CAS  Google Scholar 

  19. Wiggert B, Russell R, Lewis M, Chader G (1977) Differential binding to soluble nuclear receptors and effects on cell viability of retinol and retinoic acid in cultured retinoblastoma cells. Biochem Biophys Res Commun 79: 218–225

    PubMed  CAS  Google Scholar 

  20. Greco FA, Richardson RL, Snell JD, Stroup SL, Oldham RK (1979) Small cell lung cancer. Complete remission and improved survival. Am J Med 66: 625–630

    Google Scholar 

  21. Hansen M, Hansen HH, Dombernowsky P (1980) Long-term survival in small cell carcinoma of the lung. JAMA 244: 247–250

    Google Scholar 

  22. Ihde DC, Cohen MH, Bernath AM, Matthews MJ, Bunn PA, Minna JD (1978) Serial fiberoptic bronchoscopy during chemotherapy for small cell carcinoma of the lung: Early detection of patients at high risk of relaps. Chest 74: 531–536

    Google Scholar 

  23. Ihde DC, Cohen MH, Simms EB, Matthews MJ, Bunn PA, Minna JD (1980) Evaluation of response to chemotherapy with fiberoptic bronchoscopy in non-small cell lung cancer. Cancer 45: 1693–1696

    PubMed  CAS  Google Scholar 

  24. Niederle N, Schmidt CG, Seeber S (1980) Nichtoperative Therapie des Bronchialkarzinoms. Internist Welt 10: 359–368

    Google Scholar 

  25. Niederle N, Nakhosteen JA, Maassen W, Seeber S (1981) Advanced bronchogenic carcinoma Control of therapy by bronchoscopy. In: Nakhosteen JA, Maassen W (eds) Bronchology: research, diagnostik, and therapeutic aspects. Martinus Nijhoff Publ., The Hague Boston London, pp 367–370

    Google Scholar 

  26. Schmidt N, Schmidt-Hermes HJ, Sommer F (1974) Zur Bedeutung der Bronchoskopie bei der Therapiekontrolle und der Verlaufsbeobachtung des hochvoltbestrahlten Bronchialkarzinoms. Strahlentherapie 148: 549–555

    PubMed  CAS  Google Scholar 

  27. Seeber S, Niederle N, Schilcher RB, Schmidt CG (1980) Adriamycin, Cyclophosphamid und Vincristin („ACO“) beim kleinzelligen Bronchialkarzinom. Verlaufsanalyse und Langzeitergebnisse. Onkologie 3: 5–11

    Google Scholar 

  28. Cox JD, Byhardt R, Komaki R, Wilson JF, Libnoch JA, Hansen R (1979) Interaction of thoracic irradiation and chemotherapy on local control and survival in small cell carcinoma of the lung. Cancer Treat Rep 63: 1251–1255

    PubMed  CAS  Google Scholar 

  29. Cohen MH, Ihde DC, Bunn PA, Fossieck BE, Matthews MJ, Shackney SE, Johnston-Early A, Makuch R, Minna JD (1979) Cyclic alternating combination chemotherapy for small cell bronchogenic carcinoma. Cancer Treat Rep 63: 163–170

    PubMed  CAS  Google Scholar 

  30. Cohen MH, Ihde DC, Fossieck BE, Bunn PA, Matthews MJ, Shackney SE, Johnston AV, Minna JD (1978) ASCO Abstr No. C-209 —4. Cohen MH, Ihde DC, Fossieck BE, Bunn PA, Matthews MJ, Johnston AV, Minna JD (1977) Proc Am Assoc Cancer Res 18: 286

    Google Scholar 

  31. Ayvazian LF, Schneider B, Gewirtz G, Yalow RS (1975) Ectopic production of big ACTH in carcinoma of the lung. Am Rev Respir Dis 111: 279–287

    PubMed  CAS  Google Scholar 

  32. Silva OL, Becker KL, Primack A (1974) Ectopic secretion of calcitonin big oat-cell carcinoma. N Engl J Med 290: 1122–1124

    PubMed  CAS  Google Scholar 

  33. Roberts JL, Herbert E (1977) Characterisation of a common precursor to corticotropin and -lipotropin. Proc Natl Acad Sci USA 74: 5300–5304

    PubMed  CAS  Google Scholar 

  34. Mains RE, Eipper BA, Ling N (1974) Common precursor to corticotropin and endorphins. Proc Natl Acad Sci USA 74: 3014–3018

    Google Scholar 

  35. Gropp C, Havemann K, Pflüger KH (1980) Calcitonin als Tumormarker beim Bronchialkarzinom. Dtsch Med Wochenschr 105: 1175–1178

    PubMed  CAS  Google Scholar 

  36. Goldstein G, Slyzys IS, Chase MW (1961) Studies on fluorescincouples sheep anti-rabbit globuline. J Exp Med 114: 89–94

    PubMed  CAS  Google Scholar 

  37. Weber K, Osborn M (1969) The reliability of molecular weight determinations be dodecylt sulfate-polyacryl-amide gel electrophoresis. J Biol Chem 244: 4406–4412

    PubMed  CAS  Google Scholar 

  38. Goltsman D, Tischler AS (1978) Characterization of calcitonin released by medullary thyroid carcinoma in tissue culture. J Clin Invest 61: 449–458

    Google Scholar 

  39. Schwarz N et al. (1976) Wien Klin Wochenschr 13: 423

    Google Scholar 

  40. Ambrus JL et al. (1975) J Med 6: 61

    PubMed  CAS  Google Scholar 

  41. Fisher MM et al. (1951) JAMA 147: 1213

    Google Scholar 

  42. McKay DG et al. (1953) Cancer 6: 862

    PubMed  CAS  Google Scholar 

  43. Storer Jet al. (1953) Surgery 33: 683

    PubMed  CAS  Google Scholar 

  44. Sun NCJ (1974) Mayo Clin Proc 49: 636

    PubMed  CAS  Google Scholar 

  45. Caprini JA (1976) Thromb Res 9: 167

    PubMed  CAS  Google Scholar 

  46. Harker LA et al. (1972) N Engl J Med 287: 999

    PubMed  CAS  Google Scholar 

  47. Lyman GH et al (1978) Cancer 41: 1113

    PubMed  CAS  Google Scholar 

  48. Losito R et al. (1976) Am J Clin Pathol 68: 258

    Google Scholar 

  49. Brugarolas A et al. (1973) Surg Gynecol Obstet 136: 75

    PubMed  CAS  Google Scholar 

  50. Cooper EH et al. (1978) Biomedicine 29: 154

    PubMed  CAS  Google Scholar 

  51. Child JA et al (1978) Lancet 1: 897

    Google Scholar 

  52. Späti B et al. (1980) Acta Haematol (Basel) 64: 79

    Google Scholar 

  53. Child JA (1980) Cancer 45: 318

    PubMed  CAS  Google Scholar 

  54. Ostendorf P et al. (1978) Therapiewoche 28: 2353

    Google Scholar 

  55. Amlot PL et al. (1973) Exp J Cancer 15: 791

    Google Scholar 

  56. Baldwin RW, Price MR, Robins RA (1972) Blocking of lymphocyte-mediated cytotoxicity for rat hepatoma cells by tumor-specific antigen-antibody complexes. Nature [New Biol] 238: 185–187

    CAS  Google Scholar 

  57. Collip PJ (1972) Hypoglycemia and leukemia. Pediatrics 49: 788–789

    Google Scholar 

  58. Gropp C, Havemann K, Scheuer A, Gerdes H (1979) Ektopische Hormonproduktion bei Patienten mit Bronchialkarzinom. Verh Dtsch Ges Inn Med 85: 1067

    Google Scholar 

  59. Gropp C, Havemann K, Pflüger K-H (1980) Calcitonin als Tumormarker beim Bronchialkarzinom. Dtsch Med Wochenschr 34: 1175

    Google Scholar 

  60. Havemann K, Gropp C, Schärfe T, Gramse M (1979) ACTH like activity in immune complexes of patients with oat cell carcinoma of the lung. Br J Cancer 39: 43

    PubMed  CAS  Google Scholar 

  61. Heath H, Sizemore GW (1979) Immunochemical heterogeneity of calcitonin in tumor, tumor venous effluent, and peripheral blood of patients with medullary thyroid carcinoma. J Lab Clin Med 93: 390–401

    PubMed  Google Scholar 

  62. Jullienne A, Segond N, Calmettes C, Moukhtar MS, Milhaud G (1980) Biosynthesis of human calcitonin: evidence for a prohormone. Biochem Biophys Res Commun 95: 932–937

    PubMed  CAS  Google Scholar 

  63. Lumsden J, Ham J, Ellison ML (1980) Purification and partial characterization of high-molecular-weight forms of ectopic calcitonin for a human bronchial cell line. Biochem J 191: 239–246

    PubMed  CAS  Google Scholar 

  64. MacMillan P, Mundy G (1980) Hypercalcemia and osteolytic bone lesions in chronic lymphocytic leukemia. Br Med J 281: 1107

    Google Scholar 

  65. Pflüger K-H, Gropp C, Gramse M, Scheuer A, Havemann K (1980) The incidence of paraneoplastic hormone production and autoantibody formation against proteohormones in solid tumors and leukemias. 15. Dtsch Krebskongr, Dtsch Krebsges eV München 11–15 März, 1980

    Google Scholar 

  66. Odell WD, Wolfsen SS (1978) Humoral syndromes associated with cancer. Annu Rev Med 29: 379–406

    PubMed  CAS  Google Scholar 

  67. Resch R, Haas H, Berger H (1980) Hypercalcämie als Erstmanifestation einer akuten lymphatischen Leukämie. Dtsch Med Wochenschr 105: 123–127

    PubMed  CAS  Google Scholar 

  68. Tanaka K, Nicholson WE, Orth DN (1978) The nature of the immunoreactive lipotropins in human plasma and tissue extracts. J Clin Invest 62: 94–104

    PubMed  CAS  Google Scholar 

  69. Baxter JD, Harris AW, Tomkins GM, Cohn M (1971) Glucocorticoid receptors in lymphoma cells in culture: relationship to glucocorticoid killing activity. Science 171: 189–191

    PubMed  CAS  Google Scholar 

  70. Bloomfield CD, Smith KA, Peterson BA, Hildebrandt L, Zaleskas J, Gajl-Peczalska KJ, Frizzera G, Munck A (1980) In vitro glucocorticoid studies for predicting response for glucocorticoid therapy in adults with malignant lymphoma. Lancet 1: 952–955

    PubMed  CAS  Google Scholar 

  71. Higgins ST, Gehring U (1978) Molecular mechanism of steriod hormon action. Cancer 28: 319–397

    Google Scholar 

  72. Ho AD, Hunstein W, Schmid W (1980) Determination of

    Google Scholar 

  73. glucocorticoid receptors in human leukemias. KIM Wochenschr 58: 43–45

    Google Scholar 

  74. Lippman ME, Yarbro GK, Leventhal BG (1978) Clinical implication of glucocorticoid receptors in human leukemia. Cancer 38: 4251–4256

    CAS  Google Scholar 

  75. Mastrangelo R, Malandrino R, Riccardi R, Longo P, Ranelletti FO, Iacobelli S (1980) Clinical implications of glucocorticoid receptor studies in childhood acute lymphoblastic leukaemia. Blood 56: 1036–1040

    PubMed  CAS  Google Scholar 

  76. Rosenau W, Baxter JD, Rousseau GG, Tomkins GM (1972) Mechanism of resistance to steroids: Glucocorticoid receptor defect in lymphoma cells. Nature [New Biol] 237: 20–24

    Google Scholar 

  77. Meinshausen J, Choritz H, Georgii A (1980) Frequency of skeletal metastases as revealed by routinely taken bone marrow biopsies. Virchows Arch [Pathol Anat] 389: 409–417

    CAS  Google Scholar 

  78. Hashimoto M (1962) Pathology of bone marrow. Acta Haematol Jpn 27: 193–216

    CAS  Google Scholar 

  79. Ito Y, Okuyama S, Suzuki M, Sakurai M, Sato T, Takagi H (1973) Bone marrow scintigraphy in the early diagnosis of experimental metastatic bone carcinoma. Cancer 31: 1222–1230

    PubMed  CAS  Google Scholar 

  80. Munz D, Hör G (1981) Phagocytic and proteolytic activity of liver, splenic, and bone marrow macrophages: valuable parameters of the immune status in tumor patients(in preparation)

    Google Scholar 

  81. Munz D, Standke R, Hör G (1980) 99mTc-labeled human serum albumin millimicrospheres a promising radiopharmaceutical for bone marrow studies. 18th Int Ann Meeting Soc Nucl Med, Nürnberg, proceedings (in press)

    Google Scholar 

  82. Munz D, Standke R, Hör G (1981) Measurement of phagocytic and proteolytic function of macrophages in liver, spleen, and bone marrow. In: Cox PH (ed) Progress in radiopharmacology, vol II. Elsevier/North Holland, Amsterdam, p 261

    Google Scholar 

  83. Nagel G (1980) Diagnostische Maßnahmen bei Skelettmetastasen. Dtsch Med Wochenschr 105: 710–711

    PubMed  CAS  Google Scholar 

  84. Reske SN, Vyska K, Feinendegen LE (1979) The determination of an impaired phagocytosis and catabolic function of liver macrophages in normals and tumor patients by means of 99mTc-microparticles. 17th Int Ann Meeting Soc Nucl Med, Innsbruck, proceedings (in press)

    Google Scholar 

  85. Reske SN, Vyska K, Höck A, Welsh R, Feinendegen LE (1978) Untersuchung zur nuklearmedizinischen Funktionsprüfung des RES und der unspezifischen Immunabwehr. Nuklearmediziner (Gräfelfing) 2: 144–150

    Google Scholar 

  86. Bosl GJ, Cirrincione C, Geller N, Vugrin D, Whitmore, Golbey R (1981) Complete remission in patients with metastatic nonseminomatous germ cell tumors of the testis: Multivariate analysis of prognostic variables. Proc ASCO 22: 393

    Google Scholar 

  87. Carter SK, Torti FM (1980) Combination chemotherapy of nonseminomatous testicular cancer. Cancer Chemother Pharmacol 4: 71–77

    PubMed  CAS  Google Scholar 

  88. Collins DH, Pugh RCB (1964) The pathology of testicular tumours. Livingstone Ltd., Edinburgh London

    Google Scholar 

  89. DeWolf WC, Lange TH, Einarson ME, Yunis EJ (1979) HLA and testicular cancer. Nature 277: 216–217

    PubMed  CAS  Google Scholar 

  90. Germa-Lluch JR, Begent RHJ, Bagshawe KD (1980) Tumour-marker levels and prognosis in malignant teratoma of the testis. Br J Cancer 42: 850–855

    PubMed  CAS  Google Scholar 

  91. Lapes M, Iozzi L, Ziegenfus W, Antoniades K, Vivagua R (1977) Familial testicular cancer in a father and son. Cancer 39: 2317–2320

    PubMed  CAS  Google Scholar 

  92. Samuels ML (1975) Continous intravenous bleomycin therapy with vinblastine in testicular and extragonadal germinal tumors. Proc AACR 16: 112

    Google Scholar 

  93. Scheulen ME, Schilcher RB, Higi M, Mouratidou D, Seeber S, Schmidt CG (1980) Sequentiell alternierende Chemotherapie nichtseminomatöser Hodentumoren mit Velbe/Bleomycin und Adriamycin/cis-Platinum. Ergebnisse einer prospektiven Studie bei 211 Patienten. Verh Dtsch Ges Inn Med 86: 450–454

    Google Scholar 

  94. Seeber S, Gallmeier WM, Höffken K, Osieka R, Bruntsch U, Schmidt CG (1975) Neue Chemotherapie metastasierender maligner Hodenteratome. Dtsch Med Wochenschr 100: 1319–1324

    PubMed  CAS  Google Scholar 

  95. Seeber S, Scheulen ME, Osieka R, Höffken K, Schmidt CG (1978) Development of chemotherapy programs containing vinblastine, bleomycin, adriamycin and cis-dichlorosiammine-platinum (II). In: Carter SK, Crooke ST, Umezawa H (eds) The bleomycins-current status and new developments. Academic Press, New York, pp 215–226

    Google Scholar 

  96. Alexanian R, Haut A, Khan AV et al. (1969) Treatment for multiple myeloma; combination chemotherapy with different melphalan dose regimes. JAMA 208: 1680–1685

    Google Scholar 

  97. Hoogstraaten B, Sheehe PR, Cuttner J et al. (1967) Melphalan and multiple myeloma. Blood 30: 74–83

    Google Scholar 

  98. McAthur JR, Athens JW, Wintrobe MM et al. (1970) Melphalan and myeloma; experience with a low-dose continous regime. Ann Intern Med 72: 655–670

    Google Scholar 

  99. Korst DR, Clifford GO, Fewler WM et al. (1964) Multiple myeloma; analysis of cyclophosphamide therapy in 165 patients. JAMA 189: 758–765 —

    Google Scholar 

  100. Bergsagel DE, Cowan DH, Hasselback R (1972) Plasma cell myeloma: Response of melphalan-resistant patients to high dose intermittent cyclophosphamide. Can Med Assoc J 107:851–855 —

    Google Scholar 

  101. Alberts DS, Chang SY, Chen HSG, Evans TL, Moou TE (1979) Oral melphalan kinetics. Clin Pharmacol Ther 26: 737–745

    PubMed  CAS  Google Scholar 

  102. Durie BGM, Salmon SE (1975) A clinical staging system for multiple myeloma. Cancer 36: 842

    PubMed  CAS  Google Scholar 

  103. Guidelines for Protocol Studies (1968) II. Plasma cell myeloma. Chronic Leukaemia-Myeloma Task Force of the National Cancer Institute. Cancer Chemother Rep 1: 17–39

    Google Scholar 

  104. Millington PF, Finean JB, Forbes OC, Frazer AC (1962) Studies of effects of aminopterin on the small intestine of the rat. I. The morphological changes following a single dose of aminopterin. Exp Cell Res 28: 162–178

    Google Scholar 

  105. Robinson JWL, Antonioli JA, Vannotti A (1970) Effect of oral methotrexate on the rat intestine. Biochem Pharmacol 15: 1479–1489

    Google Scholar 

  106. Roche AC, Bognel JC, Bernier JJ (1970) Correlation between the histological changes and glucose intestinal absorption following a single dose of 5-fluorouracil. Digestion 3: 195–212

    PubMed  CAS  Google Scholar 

  107. Altmann GG (1974) Changes in the mucosa of the small intestine following methotrexate administration or abdominal X-irradiation. Am J Anat 140: 263–280

    PubMed  CAS  Google Scholar 

  108. Wurth MA, Musacchia XJ (1973) Mechloretamine effects on intestinal absorption in vitro and on cell proliferation. Am J Physiol 225: 73–80

    PubMed  CAS  Google Scholar 

  109. Fleischer K, Fiedler R (1973) Effects of cyclophosphamide on the excretory function of the rat pancreas. Arch Pharmacol 277: R17

    Google Scholar 

  110. Fromm H, Rodgers IB (1971) Effect of aminopterin on lipid absorption. Depression of lipid reesterifying enzymes. Am J Physiol 221: 998–1003

    Google Scholar 

  111. Kaufmann JH, Spiro HM, Floch MH (1967) Intestinal epithelial enzyme abnormalities induced by 5-fluoro-uracil translocation of Na DPH2-dehydrogenase. Am J Dig Dis 12: 598–606

    PubMed  CAS  Google Scholar 

  112. Vitale JJ, Zamchek N, Di Giorgia J, Hegsted DM (1954) Effects of aminopterin administration on the respiration and morphology of the gastrointestinal mucosa of the rat. J Lab Clin Med 43: 583–594

    PubMed  CAS  Google Scholar 

  113. Rommel K, Dietrich M, Böhmer R, Binder R (1973) Difference in absorption of actively absorbed sugar in “gnotobiotic patients”. In: Henegjyn JB (ed) Germfree research. Academic Press, New York, pp 83–85

    Google Scholar 

  114. Creaven PJ, Cohen MH, Allen LM (1976) Methotrexate plasma kinetics: possible alterations in patients undergoing gut sterilization. Br J Cancer 34: 571–575

    PubMed  CAS  Google Scholar 

  115. Zaharako DS, Bruckner H, Oliveria VT (1969) Antibiotics alter methotrexate metabolism and excretion. Science 166: 887–888

    Google Scholar 

  116. McIntyre OR, Leone L, Pajak TF (1978) The use of intravenous melphalan ( L-PAM) in the treatment of multiple myeloma. Blood [Suppl] 52: 274

    Google Scholar 

  117. Kaduk B, Seiler G (1977) Sekundäre kongestive Kardiomyopathie nach Adriamycin. Dtsch Med Wochenschr 102: 1813–1817

    PubMed  CAS  Google Scholar 

  118. Markiewicz W, Robinson E, Peled B, Kaufmann S, Carter A (1980) Early detection of doxorubicin cardiotoxicity by M-mode echocardiography. Cancer Chemother Pharmacol 5: 119–125

    PubMed  CAS  Google Scholar 

  119. Praga C et al. (1980) Kardiotoxizität von Doxorubicin (Adriamycin): Retrospektive Studie über 1273 Patienten. In: Fetzer J, Füllenbach D, Musil J (Hrsg) Adriamycin, Bd. 3. Kehrer-Verlag, Freiburg, S. 145–159

    Google Scholar 

  120. Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by ALP. Cancer Res 39: 4681–4686

    PubMed  CAS  Google Scholar 

  121. Andreesen R, Modolell M, Weltzien HU, Eibl H, Common HH, Löhr GW, Munder PG (1978) Selective destruction of human leukemic cells by ALP. Cancer Res 38: 3894–3899

    PubMed  CAS  Google Scholar 

  122. Andreesen R, Modolell M, Munder PG (1979a) Selective sensitivity of CML cell population to ALP. Blood 54: 519–523

    PubMed  CAS  Google Scholar 

  123. Munder PG, Modolell M, Bausert W, Oettgen HF, Westphal O (1981) Alkyllysophospholipids in cancer therapy. In: Hersh EM et al. (eds) Augmenting agents in cancer therapy. Raven Press, New York, pp 441–458

    Google Scholar 

  124. Andreesen R, Modolell M, Speth V, Munder PG (1979b) Human macrophage activation by ALP. Immunobiology 156: 255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Miehlke

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohl, F.V. et al. (1981). Onkologie. In: Miehlke, K. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 87. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-47092-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47092-9_20

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0327-6

  • Online ISBN: 978-3-642-47092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics