Skip to main content

An Approximate Convolution Equation of a Given Response

  • Conference paper
Optimal Control Theory and its Applications

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 106))

Abstract

In constructing models of certain linear control processes, one encounters the problem of approximation by exponential sums. A function fN(t) is called an exponential sum of order N+1 if it satisfies a linear differential equation of the form

$${u^{(N + 1)}}(t)\; + \;{a_0}{u^{(N)}}(t)\; + \ldots + \;{a_N}\;u(t)\,\; = \;\,0$$
((1.1))

for some constant, real coefficients a0,a1,a2,... aN. The problem of approximation by exponential sums, then, is to find a differential equation of the form (1.1) such that the solution is close, in some sense, to a given function f(t).

The work of this author was supported by the U.S. Army Research Office — Durham under Grant DA-ARO-D-31-124-73-G51.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R., “Methods of Nonlinear Analysis”, Academic Press (1970), V.1.

    Google Scholar 

  2. Bellman, R., Gluss, B., and Roth, R., Segmental Differential Approximation and the “Black Box” Problem, J. of Math. Anal, and Appl. 12 (1965), 91–104.

    Article  MathSciNet  MATH  Google Scholar 

  3. Darboux, M.G., Memoirs sur l’approximation des fonctions de trés grands nombres et sur une class etendue de developpments en serie, I., J. Math. Pures et Appl, Ser. 3 (1878), 5–56.

    Google Scholar 

  4. Davison, E.J., A New Method for Simplifying Large Linear Dynamic Systems, IEEE Trans. Automatic Control, AC-13 (1968), 214–215.

    Article  Google Scholar 

  5. Gearhart, W.B., Differential Approximation Techniques for the Approximation of Exponential Sums, to appear. (1973).

    Google Scholar 

  6. Golomb, M., “Approximation of Functions”, Argonne National Laboratories Lecture Series.

    Google Scholar 

  7. Hille, E., “Analytic Function Theory”, V. II, Blaisdell, Waltham, Mass. (1962).

    MATH  Google Scholar 

  8. Kardashov, A.A., Analysis of the Quality of Automatic Control by the Method of Reducing the Order of the Differential Equations, Automatika i Telemekhanika, 24 (1963), 1073–1083.

    Google Scholar 

  9. Kushner, J., Approximation to Nonlinear Filters, IEEE Trans. Automatic Control, AC-12. (1967), 546–556.

    Article  Google Scholar 

  10. Meier, L., and Luenberger, D.G., Approximation of Linear Constant System, IEEE Trans. Automatic Control, AC-12 (1967), 585–589.

    Article  Google Scholar 

  11. Merz, G., Padesche Naheruugs bruche und Iterations verfahren hoherer Ordung, Computing 3 (1968), 165–183.

    Article  MathSciNet  MATH  Google Scholar 

  12. Pommerenke, C.H., Pade Approximants and Convergence in Capacity, J. of Math. Anal., Appl. 41 (1973), 775–780.

    Article  MathSciNet  MATH  Google Scholar 

  13. Scheid, F., “Theory and Problems of Numerical Analysis”, Schaum’s Outline Series, McGraw-Hill (1968).

    MATH  Google Scholar 

  14. Wall, H.S., “Continued Fractions”, van Nostrand, N.Y., (1948).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Gearhart, W.B., Stenger, F. (1974). An Approximate Convolution Equation of a Given Response. In: Kirby, B.J. (eds) Optimal Control Theory and its Applications. Lecture Notes in Economics and Mathematical Systems, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48290-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48290-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07026-9

  • Online ISBN: 978-3-642-48290-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics