Skip to main content
  • 32 Accesses

Abstract

The function of nerve cells is that of carrying messages from one point of the body to another; they form the communication system of our organs. It is well established that these messages, the nerve impulses, are propagated by electric currents. Knowledge of the mechanism by which the electric currents are generated and propagated is essential for the understanding of nerve acticity. All modern concepts are based on the so-called “membrane theory” formulated by Bernstein (1902), after physical chemists, especially Traube, Ostwald and Nernst, had provided the theoretical background. According to this theory nerve fibers are surrounded by a semipermeable membrane which has a positive charge on the outside and a negative one on the inside; it is selectively permeable to K+. On stimulation the active region becomes permeable to all ions and therefore depolarized; thereby currents are generated which stimulate the adjacent points; the same process takes place there. In this way successive parts of the membrane are activated and the impulse is propagated along the axon.

This work was supported by the Division of Research Grants and Fellowships of the National Institutes of Health, U. S. Public Health Service, Grant No. B-400, by the National Science Foundation, Grant No. G-4331, and by the Atomic Energy Commission, Contract No. AT(30-1)-1503.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, B. C., X. Aubert, et A. Fessard: La production de chaleur associée à décharge du tissu électrique de la torpille. J. de Physiol. 50, 99 (1958).

    CAS  Google Scholar 

  • Abbott, B. C., A. V. Hill, and J. V. Howarth: The positive and negative heat production associated with a nerve impulse. Proc. roy. Soc. B 148, 149 (1958).

    CAS  Google Scholar 

  • Altamirano, M., W. L. Schleyer, C. W. Coates, and D. Nachmansohn: Electrical activity in electric tissue. I. The difference between tertiary and quaternary nitrogen compounds in relation to their chemical and electrical activities. Biochim. biophys. Acta 16, 268 (1955).

    CAS  Google Scholar 

  • Augustinsson, K. B., and D. Nachmansohn: Distinction between acetylcholinesterase and other choline ester splitting enzymes. Science 1949, 110.

    Google Scholar 

  • Bergmann, F., I. B. Wilson, and D. Nachmansohn: Acetylcholinesterase IX. Structural features determing the inhibition by amino acids and related compounds. J. biol. Chem. 186, 693 (1950).

    PubMed  CAS  Google Scholar 

  • Berman, R., I. B. Wilson, and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. biophys. Acta 12, 315 (1953).

    CAS  Google Scholar 

  • Bernstein, J.: Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Pflügers Arch. ges. Physiol. 92, 521 (1902).

    CAS  Google Scholar 

  • Bernstein, J.,u. A. Tschermak: Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Pflügers Arch. ges. Physiol. 112, 439 (1906).

    Google Scholar 

  • Bullock, T. H., D. Nachmansohn, and M. A. Rothenberg: Effects of inhibitors of choline esterase on the nerve action potential. J. Neurophysiol. 9, 9 (1946).

    PubMed  CAS  Google Scholar 

  • Castillo, J. Del, and B. Katz: Biophysical aspects of neuro-muscular transmission. Progress in Biophysics, J. A. V. Butler, ed., p. 121. London and New York: Pergamon Press 1956.

    Google Scholar 

  • Chagas, C.: Studies on the mechanism of curare fixation by cells. In Curare and curare-like agents. D. Bovet, F. Bovet-Nitti, and G. B. Marini-Bettolo, eds. p. 327. Amsterdam: Elsevier (1959).

    Google Scholar 

  • Clark, A. J.: General Pharmacology. In Handbuch der experimentellen Pharmakologie. IV. W. Heubner and J. Schueller, eds. Berlin: Springer 1937.

    Google Scholar 

  • Cole, K. S.: Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3, 253 (1949).

    CAS  Google Scholar 

  • Cole, K. S.: Ions, potentials and the nerve impulse. In Electrochemistry in biology and medicine, T. Shedlovsky, ed., p. 121. New York: John Wiley and Sons 1955.

    Google Scholar 

  • Cole, K. S., and H. J. Curtis: Electric impedance of the squid giant axon during activity. J. gen. Physiol. 22, 649 (1939).

    Article  PubMed  CAS  Google Scholar 

  • Cowan, S. L.: The initiation of all or none responses in muscle by acetylcholine. J. Physiol. 88, 4 P (1936).

    Google Scholar 

  • Crescitelli, F. N., G. B. Koelle, and A. Gilman: Transmission of impulses in peripheral nerves treated with diisopropyl fluorophosphate (DFP). J. Neurophysiol. 9, 241 (1946).

    PubMed  CAS  Google Scholar 

  • Curtis, H. J., and K. S. Cole: Membrane resting and action potentials from the squid giant axon. J. cell. comp. Physiol. 19, 135 (1942).

    Article  CAS  Google Scholar 

  • Dettbarn, W. D.: Distinction between sodium and potassium in change in permeability effected by lipid-soluble analogues of acetylcholine. Nature (Lond.) 183, 465 (1959).

    Article  CAS  Google Scholar 

  • Dettbarn, W. D.: Action of lipid soluble quaternary ammonium ions on the resting potential of myelinated nerve fibers of the frog. Biochim. biophys. Acta 32, 381 (1959).

    CAS  Google Scholar 

  • Dettbarn, W. D., I. B. Wilson, and D. Nachmansohn: Action of lipid soluble quaternary ammonium ions on conducting membranes. Science 128, 1275 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Ehrenpreis, S.: Interaction of curare and related substances with acetylcholine receptor-like protein. Science 129, 1613 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Interaction of curare with an acetylcholine receptor-like protein. Fed. Proc. 18, 220 (1959).

    Google Scholar 

  • Erlanger, J.: The initiation of impulses in axons. J. Neurophysiol. 2, 370 (1939).

    Google Scholar 

  • Fulton, J. F.: Physiology of the nervous system. Science 90, 110 (1939).

    Article  PubMed  CAS  Google Scholar 

  • Physiology of the nervous system. New York: Oxford Univ. Press ( 1938; 1943; 1949 ).

    Google Scholar 

  • Gilman, A.: The effects of drugs on nerve activity. Ann. N. Y. Acad. Sci. 47, 549 (1946).

    Article  CAS  Google Scholar 

  • Hill, A. V.: Chemical wave transmission in nerve. Cambridge Univ. Press 1932.

    Google Scholar 

  • Hinterbuchner, L. P., and I. B. Wilson: Muscle response to long chain quaternary ammonium ions. I. Biochim. biophys. Acta 31, 323 (1959).

    CAS  Google Scholar 

  • Hinterbuchner, L. P., and I. B. Wilson: Muscle response to long chain quaternary ammonium ions. II. Biochim. biophys. Acta 32, 375 (1959).

    CAS  Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 338 (1951).

    Article  Google Scholar 

  • Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibers. Proc. roy. Soc. B 148, 1 (1957).

    Google Scholar 

  • Hodgkin, A. L., and A. F. Hurley: Resting and action potentials in single nerve fibers. J. Physiol. 104, 176 (1945).

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L.,and B. Katz: The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. 108, 33 (1950).

    Google Scholar 

  • Keynes, R. D.: The leakage of radioactive potassium from stimulated nerve. J. Physiol. 113, 99 (1951).

    PubMed  CAS  Google Scholar 

  • Keynes, R. D.: The ionic movements during nervous activity. J. Physiol. 114, 119 (1951).

    PubMed  CAS  Google Scholar 

  • Metabolism and activity in giant axons. Int. Congress of Biochemistry. Vienna 1958.

    Google Scholar 

  • Kewitz, H.: A specific antidote against lethal alkylphosphate intoxication. III. Repair of chemical lesion. Arch. Biochem. Biophys. 66, 263 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Kewitz, H., and I. B. Wilson: A specific antidote against lethal alkylphosphate intoxication. Arch. Biochem. Biophys. 60, 261 (1955).

    Article  Google Scholar 

  • Kewitz, H., I. B. Wilson, and D. Nachmansohn: A specific antidote against lethal alkylphosphate

    Google Scholar 

  • intoxication. II. Antidotal properties. Arch. Biochem. Biophys. 64, 456 (1956).

    Google Scholar 

  • Korey, S. R., B. DE Braganza, and D. Nachmansohn: Choline acetylase. V. Esterifications

    Google Scholar 

  • and trans-acetylations. J. biol. Chem. 189, 705 (1951).

    Google Scholar 

  • Koshland, D. E.: Group transfer as an enzymatic substitution mechanism. In The mechanism of enzyme action, W. D. Mcelroy and B. Glass, eds. p. 608. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Lipmann, F.: Biosynthetic mechanism. In Harvey Lect. 1948/1949, 44, 99 (1950).

    Google Scholar 

  • Loewenstein, W. R., and D. Molins: Cholinesterase in a receptor. Science 128, 1284 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Lynen, F., E. Reichert, U. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. “Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. Chem. 574, 1 (1951).

    Article  CAS  Google Scholar 

  • Meyer, K. H.: La perméabilité des membranes. V. Sur l’origine des courants bioélectriques. Hely. chim. Acta 20, 634 (1937).

    Article  CAS  Google Scholar 

  • Meyerhof, O.: Zur Energetik der Zellvorgänge. Göttingen: Vandenhoeck and Ruprecht 1913.

    Google Scholar 

  • Monnier, A. M., et M. Dubuisson: L’action des nerfs extrinsèques du coeur considérée comme phénomène de subordination. Arch. intern. Physiol. 38, 180 (1934).

    Google Scholar 

  • Nachmansohn, D.: Chemical mechanisms of nerve activity. In Modern trends of physiology and biochemistry, E. S. G. Barron, ed. New York: Acad. Press (1952).

    Google Scholar 

  • Nachmansohn, D., Metabolism and function of the nerve cell. In Harvey lectures 1953/1954. New York: Acad. Press (1955a).

    Google Scholar 

  • Nachmansohn, D.:Die Rolle des Azetylcholins in den Elementarvorgängen der Nervenleitung. Asher-Spiro. Ergebn. der Physiol. 48, 575 (1955b).

    CAS  Google Scholar 

  • Nachmansohn, D.: Etudes sur la conduction de l’influx nerveux au niveau moléculaire. Bull. Soc. Chim. Biol. 39, 1021 (1957).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D. : The neuromuscular junction. B. The role of the acetylcholine system. In The structure and function of muscle, G. H. Bourne, ed. New York: Acad. Press (1959 a) (in press).

    Google Scholar 

  • Nachmansohn, D. : Chemical and molecular basis of nerve activity. New York: Acad. Press (1959 b).

    Google Scholar 

  • Nachmansohn, D., C. W. C.ates, and R. T. Cox: Electric potential and activity of choline esterase in the electric organ of electrophorus electricus (linnaeus). J. gen. Physiol. 25, 75 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn, D. ,C. W. Coates, and M. A. Rothenberg: Studies on cholinesterase. II. Enzyme activity and voltage of the action potential in electric tissue. J. biol. Chem. 163, 39 (1946 a).

    Google Scholar 

  • Nachmansohn, D., C. W. C.ates, and M. A. Rothenberg, and M. V. Brown: On the energy source of the action potential in the electric organ of electrophorus electricus. J. biol. Chem. 165, 223 (1946b).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., R. T. Cox, C. W. Coates, and A. L. Machado: Action potential and enzyme activity in the electric organ of electrophorus electricus. II. Phosphocreatine as energy source of the action potential. J. Neurophysiol. 6, 383 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., H. M. John, and H. Waelsch: Effect of glutamic acid on the formation of acetylcholine. J. biol. Chem. 150, 485 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., et E. Lederer: Sur la biochimie de la cholinesterase. Bull. Soc. Chim. biol. Paris 21, 797 (1939).

    CAS  Google Scholar 

  • Nachmansohn, D., and A. L. Machado: The formation of acetylcholine. A.new enzyme “choline acetylase”. J. Neurophysiol. 6, 397 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., and I. B. Wilson: The enzymic hydrolysis and synthesis of acetylcholine. In Advances in enzymol., F. F. Nord, ed. Interscience, New York 12, 259 (1951).

    Google Scholar 

  • Nachmansohn, D., and I. B. Wilson: Molecular basis for generation of bioelectric potentials. In Electrochemistry in biology and medicine, T. Shedlowsky, ed. New York: John Wiley & Sons (1955).

    Google Scholar 

  • Nachmansohn, D., and I. B. Wilson: Trends in the biochemistry of nerve activity. In Currents in biochemical research. D. E. Green, edit. Interscience, New York (1956).

    Google Scholar 

  • Overton, E.: Beiträge zur allgemeinen Muskel und Nervenphysiologie. Pflügers Arch. ges. Physiol. 92, 346 (1902).

    CAS  Google Scholar 

  • Rothenberg, M. A.: Studies on the permeability of nerve membranes to ions. Trans. Amer. Neurol. Ass. 230 (1949).

    Google Scholar 

  • Rothenberg, M. A.: Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes. Biochim. biophys. Acta 4, 96 (1950).

    CAS  Google Scholar 

  • Rothenberg, M. A. and E. A. Feld: Rate of penetration of electrolytes into nerve fibers. J. biol. Chem. 172, 345 (1948).

    CAS  Google Scholar 

  • Rothenberg, M. A., D. B. Sprinson, and D. Nachmansohn: Site of action of acetylcholine. J. Neurophysiol. 11, 111 (1948).

    PubMed  CAS  Google Scholar 

  • Schoffenlels, E.: An isolated single electroplax preparation. II. Improved preparation for studying ion flux. Biochim. biophys. Acta 26, 585 (1957).

    Google Scholar 

  • Schoffenlels, E.: The effect of temperature on the electrical activity of the isolated single electroplax of electrophorus electricus. Science 1958, 1117.

    Google Scholar 

  • Schoffenlels, E.: Ion movements studied with single isolated electroplax. Symposium on physico-chemical mechanism of nerve activity. Ann. N. Y. Acad. Sci. 81, 285 (1959).

    Article  Google Scholar 

  • Schoffenlels, E., and D. Nachmansoin: An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds. Biochim. biophys. Acta 26, 1 (1957).

    Google Scholar 

  • Schoffenlels, E., I. B. Wilson, and D. Nachmansohn: Overshoot and block of conduction by lipid soluble acetylcholine analoges. Biochim. biophys. Acta 27, 629 (1958).

    Google Scholar 

  • Seaman, G. R., and R. K. Houlihan: Enzyme systems in Tetrahymena geleii S. II. Acetyl-cholinesterase activity. Its relation to motility of the organism and to coordinated ciliary action in general. J. cell. comp. Physiol. 37, 309 (1951).

    Article  CAS  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XII. Further studies of binding forces. J. biol. Chem. 197, 215 (1952).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B.: The mechanism of enzyme hydrolyses studied with acetylcholinesterase. In The mechanism of enzyme action. W. D. Mcelroy and B. Glass, eds. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Wilson, I. B.: Promotion of acetylcholinesterase activity by the anionic site. Faraday Soc. Discuss. 20, 119 (1955).

    Article  Google Scholar 

  • Wilson, I. B.: Molecular complementarity in antidotes for nerve gases. Symposium on physico-chemical mechanisms of nerve activity. Ann. N. Y. Acad. Sci. 81, 307 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. B., F. Bergmann, and D. Nachmansohn: Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. J. biol. Chem. 186, 781 (1950).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B., and E. Cabib: Acetylcholinesterase: Enthalpies and entropies of activation. J. A. C. S. 78, 202 (1956).

    Google Scholar 

  • Wilson, I. B., and M. Cohen: The essentiality of acetylcholinesterase in conduction. Biochim. biophys. Acta 11, 147 (1953).

    CAS  Google Scholar 

  • Wilson, I. B., and S. Ginsburg: Reactivation of acetylcholinesterase inhibited by alkylphosphates. Arch. Biochem. Biophys. 54, 569 (1955a).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. B., and S. Ginsburg: A powerful reactivator of alkylphosphate inhibited acetylcholinesterase. Biochim. biophys. Acta 18, 168 (1955b).

    CAS  Google Scholar 

  • Wilson, I. B., and S. Ginsburg, and C. Quan: Molecular complementariness as basis for reactivation of alkylphosphate inhibited enzyme. Arch. Biochem. Biophys. 77, 286 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. B., and E. K. Meislich: Reactivation of acetylcholinesterase inhibited by alkylphosphates. J. Amer. chem. Soc. 75, 4628 (1953).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and C. Quan: Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. Biophys. 73, 131 (1958).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

H. Schwiegk F. Turba

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Nachmansohn, D. (1961). Biochemical basis of nerve activity. In: Schwiegk, H., Turba, F. (eds) Radioactive Isotopes in Physiology Diagnostics and Therapy / Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49762-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49762-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49478-9

  • Online ISBN: 978-3-642-49762-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics