Skip to main content

Thermochemical Information from Ion-Molecule Rate Constants

  • Chapter
Ion Cyclotron Resonance Spectrometry II

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 31))

Abstract

In the study of ion-molecule reactions, there has long been practice of inferring exothermicity from the fact that a reaction is observed to occur, or, on occasion, endothermicity from the non-occurrence of a particular reaction. This “bracketing” technique has, for example, been used to establish relative proton affinities by ascertaining whether or not the reaction:

$$M{H^ + } + B \rightleftarrows B{H^ + } + M$$
((1))

occurs preferentially from left to right or from the right to the left. Since the advent of the measurement of equilibrium constants for a bimolecular ion-molecule reactions in 1973 [1], most quantitative thermochemical information about ionmolecule reactions is derived from such measurements. Nevertheless, there are situations in which equilibrium constant determinations can not be made; this happens, for example, when one of the neutral bases is a free radical, or when a fast competing process precludes the establishement of an equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Bowers, D.H. Aue, H.M. Webb, and R.T. Mclver, Jr., J. Am. Chem. Soc. 93 (1971) 4314; For reviews, see:

    Article  Google Scholar 

  2. S.G. Lias in “Ion Cyclotron Resonance Spectrometry” (H. Hartmann and K.-P. Wanczek, editors), Springer-Verlag Lecture Notes in Chemistry Series, 7 (1978);

    Google Scholar 

  3. D.H. Aue and M.T. Bowers, Chapter 9 in “Gas Phase Ion Chemistry, Vol. 2 (M.T. Bowers, editor), Academic Press (1979).

    Google Scholar 

  4. S.G. Lias, D.M. Shold, and P. Ausloos, J. Am. Chem. Soc. 102 (1980) 2540.

    Article  CAS  Google Scholar 

  5. J.C. Traeger and R.G. McLoughlin, J. Am. Chem. Soc, 103 (1981) 3647.

    Article  CAS  Google Scholar 

  6. T. Baer, J. Am. Chem. Soc. 102 (1980) 2482.

    Article  CAS  Google Scholar 

  7. H.M. Rosenstock, R. Buff, M.A.A. Ferreira, S.G. Lias, A.C. Parr, R.L. Stockbauer, and J.L. Holmes, J. Am. Chem. Soc, submitted for publication.

    Google Scholar 

  8. All heats of formation of ions cited here are given using the so-called “stationary electron” convention. That is, the integrated heat capacity of the electron is taken to be zero at all temperatures.

    Google Scholar 

  9. At this writing, there are several formulations available (listed below) for estimating rate constants for complex-forming collisions of ions with polar molecules. For the results given in Tables 1 and 3, collision rate constants have been calculated using the A.D.O. theory, reference (c) below. In Table 4, we cite the range of values calculated using the different appoaches from references (c), (d), and (e). The rate constants cited or referred to in Tables 5 and 7 are Langevin-Gioumousis-Stevenson values, references (a) and (b). (a) P. Langevin, Ann. Chim. Phys. 5 (1905) 245;

    CAS  Google Scholar 

  10. G. Gioumousis, and D.P. Stevenson, J. Chem. Phys. 29 (1958) 294;

    Article  CAS  Google Scholar 

  11. M.T. Bowers and T. Su in “Interactions between Ions and Molecules” (P. Ausloos, editor), Plenum (1975);

    Google Scholar 

  12. W.J. Chesnavich, T. Su, and M.T. Bowers, in “Kinetics of Ion-Molecule Reactions” (P. Ausloos, editor), Plenum (1979);

    Google Scholar 

  13. D.P. Ridge in “Kinetics of Ion-Molecule Reactions” (P. Ausloos, editor), Plenum (1979).

    Google Scholar 

  14. See for example: S.G. Lias, J.R. Eyler, and P. Ausloos, Int. J. Mass Spectrom. Ion Phys. 19 (1976) 219.

    Google Scholar 

  15. See for example reference 2 and D.K. Bohme, G.I. Mackay, and H.I. Schiff, J. Chem. Phys. 73 (1980) 4976.

    Google Scholar 

  16. See for example S.G. Lias, P. Ausloos, and Z. Horvath, Int. J. Chem. Kinetics, VIII, 725 (1976).

    Google Scholar 

  17. M. Mautner, J. Am. Chem. Soc, in press.

    Google Scholar 

  18. W. Tsang, Int. J. Chem. Kinetics 10 (1978) 41.

    Google Scholar 

  19. S.G. Lias and P. Ausloos, J. Am. Chem. Soc. 100 (1978) 6027.

    Article  CAS  Google Scholar 

  20. See for instance, E.A. Moelwyn-Highes, Chapter XXII of “Physical Chemistry”, Pergamon-Press (1961).

    Google Scholar 

  21. S.G. Lias, J. Am. Chem. Soc, submitted for publication.

    Google Scholar 

  22. P. Ausloos and S.G. Lias, J. Am. Chem. Soc. 100 (1978) 1953.

    Article  CAS  Google Scholar 

  23. P. Ausloos and S.G. Lias, J. Am. Chem. Soc. 103 (1981) 3641.

    Article  CAS  Google Scholar 

  24. N. Agmon and R.D. Levine, Chem. Phys. Letters, 52 (1977) 197.

    Article  CAS  Google Scholar 

  25. S.G. Lias, unpublished results.

    Google Scholar 

  26. J.F. Wolf, R.H. Staley, I. Koppel, M. Taagepera, R.J. McIver, Jr., J.L. Beauchamp, and R.W. Taft, J. Am. Chem. Soc. 99 (1977) 5417; b)

    Google Scholar 

  27. Y.K. Lau, Ph.D. thesis, University of Alberta, 1979

    Google Scholar 

  28. R. Yamdagni and P. Kebarle, J. Am. Chem. Soc. 98 (1976) 1320.

    Google Scholar 

  29. W. Tsang, Int. J. Chem. Kinetics 10 (1978) 821

    Article  CAS  Google Scholar 

  30. A.L. Castelhano, P.R. Marriott, and D. Griller, J. Am. Chem. Soc. 103 (1981) 4262

    Google Scholar 

  31. C.E. Canosa and R.M. Marshall, Int. J. Chem. Kinetics 13 (1981) 303

    Google Scholar 

  32. M. Rossi and D.M. Golden, Int. J. Chem. Kinetics 11 (1979) 969.

    Google Scholar 

  33. F.A. Houle and J.L. Beauchamp, J. Am. Chem. Soc. 101 (1979) 4067

    Google Scholar 

  34. J. Dyke, N. Jonathan, E. Lee, A. Morris, and M. Winter, Phys. Scr. 16 (1977) 197.

    Google Scholar 

  35. M. Meot-Ner (Mautner), L.W. Sieck and P. Ausloos, J. Am. Chem. Soc, in press.

    Google Scholar 

  36. L.W. Sieck and M. Mautner, to be submitted.

    Google Scholar 

  37. V.J. Hammond, W.C. Price, J.P. Teegan, and A.D. Walsh, Disc. Faraday Soc. 9 (1950) 53.

    Article  Google Scholar 

  38. M. Mautner, J. Am. Chem. Soc, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lias, S.G. (1982). Thermochemical Information from Ion-Molecule Rate Constants. In: Ion Cyclotron Resonance Spectrometry II. Lecture Notes in Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50207-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50207-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11957-9

  • Online ISBN: 978-3-642-50207-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics