Skip to main content

Konzentrationsbestimmung mittels RFA

  • Chapter
Röntgenfluoreszenzanalyse

Zusammenfassung

Das Hauptanwendungsgebiet der RFA ist die quantitative Elementanaiyse, wobei der Zusammenhang zwischen der Intensität ausgewählter Röntgenspektrallinien und der Konzentration ausgenutzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Sherman, J.: A theoretical derivation of the composition of mixable specimens from fluorescence intensities. Spectrochim. acta 291–311 (1955), S.283

    Google Scholar 

  2. Shiraiwa, T., u. N. Fujino: Theoretical calculation of fluorescent x-ray intensities in fluorescent x-ray spectrochemical analysis. Jap. Journ. Appl. phys. 5 (1966), S. 886

    Article  CAS  Google Scholar 

  3. Dunn, W. L., C. R. Efird, R. P. Gardner u. K. Verghese: A mathematical model for tertiary x-rays from heterogeneous samples. X-Ray Spectrom. 4 (1975), S. 18

    Article  CAS  Google Scholar 

  4. Gardner, R. P., u. A. R. Hawthorne: Monte Carlo Simulation of the x-ray fluorescence excited by discrete energy photons in homogeneous samples including tertiary inter-element effects. X-Ray Spectrom. 4 (1975), S.138

    Article  CAS  Google Scholar 

  5. Doster, J.M., u. R.P. Gardner: The complete spectral response for EDXRF Systems-Calculation by Monte Carlo and analysis applications. X-Ray Spectrom. 11 (1982), S. 173

    Article  CAS  Google Scholar 

  6. Zanin, S.J., u. G.E. Hooser: Analysis of solders by x-ray spectrometry. Appl. Spectrosc. 22 (1968), S. 105–108

    Article  CAS  Google Scholar 

  7. Guiraldenq, P., u. M. Sabot: The effect of the structure and surface condition on x-ray fluorescence analysis of over-carburized steels containing 13 % chromium. Chim. Analytique 49 (1967), S.633–648

    Google Scholar 

  8. Gardner, R. P., D. Betel u. K. Verghese: X-ray fluorescence analysis of heterogeneous materials: effects of geometry and secondary fluorescence. International Journal of Applied Radiation und Isotopes 24 (1973), S. 135–146

    Article  CAS  Google Scholar 

  9. Hunter, C.B., u. J.R. Rhodes: Particle size effects in x-ray emission analysis: formulae for continuous size distributions. X-Ray Spectrom. 1 (1972), S. 107–111

    Article  CAS  Google Scholar 

  10. Weber, K.: Eine vereinfachte Formulierung des Korngrößeneinflusses. X-Ray Spectrom. 5 (1976), S.7–12

    Article  CAS  Google Scholar 

  11. Brindley, G.W.: The effect of grain or particle size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods. Phil. Mag. 36 (1945), S. 347–359

    CAS  Google Scholar 

  12. Blanquet, P.: Minerals and Metals. Le Bureau de Recherches Geologiques et Miniers, Paris (1964)

    Google Scholar 

  13. Berry, P.F., T. Furuta u. J.R. Rhodes: Advan. X-Ray Anal. 12 (1969), S.612, University of Denver, Plenum Press. New York

    Article  CAS  Google Scholar 

  14. Lubecki, A., B. Holynska u. M. Wasilewska: Grain size effect in non-dispersive x-ray fluorescence analysis. Spectrochim. Acta 23 B (1968), S. 465–479

    Google Scholar 

  15. Rhodes, J.R., u. C.B. Hunter: Particle size effects in x-ray emission analysis: Simplified formulae for certain practical cases. X-Ray Spectrom. 1 (1972), S. 113–117

    Article  CAS  Google Scholar 

  16. Jenkins, I.R., u. J.I. de Vries: Practical x-ray spectrometry. 2.Aufl. London: Macmillan 1972

    Google Scholar 

  17. Claisse, F., u. C. Samson: Heterogenity effects in x-ray analysis. Adv. in X-ray Anal. 5 (1962), S. 335–354

    CAS  Google Scholar 

  18. Schäfer, K.: Atomfaktorbestimmungen im Gebiet anormaler Dispersion II. Z. Physik 86 (1933), S. 738–759

    Article  Google Scholar 

  19. Hawthorne, A. R., u. R. P. Gardner: A prospose model for particle-size effects in the x-ray fluorescence analysis of heterogeneous powders that includes incidence angle and non-random packing effects. X-Ray Spectrom. 7 (1978), S. 198–205

    Article  CAS  Google Scholar 

  20. Dumecke, G.: Eine empirische Methode zur Korrektur des Einflusses der Korngröße bei der Röntgenfluoreszenzanalyse von gepulverten Glasproben und anderen Einphasensystemen. X-Ray Spectrom. 10 (1981) 1, S.2–7

    Article  Google Scholar 

  21. Müller, R. O.: Spektrochemische Analysen mit Röntgenfluoreszenz. München/Wien: R. Oldenbourg 1967

    Google Scholar 

  22. Jenkins, R., u. P.W. Hurley: Effects of surface finish in the X-ray fluorescence analyses of bulk materials. 12. Colloquium Spectroscopicum Internationale. Exeter 1965; London: Hilger & Watts Ltd., S.444

    Google Scholar 

  23. Plesch, R.: Der Einfluß der Standards auf den Fehler der Röntgenanalyse. G-I-T Fachz. Lab. 21 (1977), S.375

    CAS  Google Scholar 

  24. Lucas-Tooth, H. J., B. J. Price: A mathematical method for the investigation of interele-ment effects in x-ray fluorescent analysis. Metallurgia 54 (1961), S. 149

    Google Scholar 

  25. Plesch, R.: Empirical matrix corrections in practical x-ray spectroscopy. X-Ray Spectrom. 5 (1976), S. 142

    Article  CAS  Google Scholar 

  26. Jenkins, R.: A review of empirical influence coefficient methods in x-ray spectrometry. Adv. in X-ray analysis 22 (1979), S.281

    Article  Google Scholar 

  27. Storm, R.: Wahrscheinlichkeitsrechnung, mathematische Statistik und statistische Qualitätskontrolle, Leipzig 1967

    Google Scholar 

  28. Linder, A.: Statistische Methoden für Naturwissenschaftler, Mediziner und Ingenieure, Basel 1961

    Google Scholar 

  29. Doerffel, K.: Statistik in der analytischen Chemie. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie 1984

    Google Scholar 

  30. Stephenson, D. A. Multivariable analysis of quantitative x-ray emission data. Anal Chem. 43 (1971), S.310

    Article  CAS  Google Scholar 

  31. Mencik, Z.: Note on the accuracy involved in the use of effective mass absorption coefficients in x-ray fluorescence analysis with polychromatic radiation. X-Ray Spectrom 4 (1975), S. 108

    Article  CAS  Google Scholar 

  32. Tertian, R., u. R. Vie le Sage: The equivalent wavelength notion: Definition, properties applications. X-Ray Spectrom. 5 (1976), S. 73

    Article  CAS  Google Scholar 

  33. Beatty, H. J., u. R. M. Brissey: Calibration method for x-ray fluorescence spectrometry. Anal. Chem. 26 (1954), S. 980

    Article  Google Scholar 

  34. Marti, W.: Determination of the interelement effects in the x-ray fluorescence analysis of Cr-steels. Spectrochim. Acta 17 (1961), S.379;

    Article  CAS  Google Scholar 

  35. Marti, W.: Über die Bestimmung des Inter-elementeffektes bei der RFA von Stählen. Spectrochim. Acta 18 (1962), S. 1499

    CAS  Google Scholar 

  36. Burnham, D., J. H. Hower u. C. Jones: Generalized x-ray emission spectrographic calibration applicable to varying compositions and sample forms. Anal. Chem. 29 (1957), S.1827

    Article  CAS  Google Scholar 

  37. Lachance, G.R., u. R. J. Traill: Practical evaluation of the matrix problem in the x-ray analysis. Can. spectros. 11 (1966), S. 63

    Google Scholar 

  38. Griss, J. W., u. L. S. Birks: Calculation methods for fluorescent x-ray spectrometry. Anal. Chem. 40(1968), S. 1080

    Article  Google Scholar 

  39. Thiele, B.: Konzentrationsbestimmungen in Mehrstoffsystemen durch RFA. Siemens-Zeitschrift 44 (1970), S. 707

    CAS  Google Scholar 

  40. Tertian, R.: An accurate coefficient method for x-ray fluorescence analysis. Adv. in X-ray analysis 19 (1976), S.85

    Google Scholar 

  41. Claisse, F., u. M. Quintin: Generalization of the Lachance-Traill-method for the correction of the matrix effect in x-ray fluorescence analysis. Can. spectros. 12 (1967), S. 129

    CAS  Google Scholar 

  42. Rasberry, S.D., u. K.F. J. Heinrich: Calibration for interelement effects in x-ray fluorescence analysis. Anal. Chem. 46 (1974), S. 81

    Article  CAS  Google Scholar 

  43. Plesch, R.: Physikalische Ableitung der Siemens-Rechnerprogramme für die Röntgen-spektrometrie. Siemens-Zeitschrift 49 (1975), S.657

    Google Scholar 

  44. Jenkins, R.: A survey of mathematical correction procedures in x-ray spectrometry. Adv. in X-ray analysis 19 (1976), S. 1

    Google Scholar 

  45. Gilfrich, J. V., u. L. S. Birks: Spectral distribution of x-ray tubes for quantitative x-ray fluorescence analysis. Anal. Chem. 40 (1968), S. 1077

    Article  CAS  Google Scholar 

  46. Gilfrich, J. V.: Spectral distribution of a thin window Rh-target x-ray spectrografic tube. Anal. Chem. 43 (1971), S.934

    Article  Google Scholar 

  47. Hubell, J. H., W. H. Mc Master, N. Kerr del Grande u. J. H. Mallett: X-ray cross sections and attenuation coefficients. In: International tables for x-ray crystallography Vol. IV, S. 47–70, Birmingham 1974

    Google Scholar 

  48. Komjak, N.J.: Tabellen der Massenschwächungskoeffizienten (russ.). LNPO Burewestnik, Leningrad 1978

    Google Scholar 

  49. Bambynek, W., B. Crasemann, R. W. Fink, H. U. Freund, H. Mark, C. D. Swift, R. E. Price u. P. V. Rao: X-ray fluorescence yields. Auger-and Coster-Kronig transitions probabilities. Rev. Modern Phys. 44 (1972), S. 716

    Article  CAS  Google Scholar 

  50. Rao, P. V., M. H. Chen u. B. Crasemann: Atomic vacancy distributions produced by inner shell ionization. Phys. rev. A5 (1972), S.997

    Google Scholar 

  51. Criss, J.W., u. L.S. Birks: Calculation methods for fluorescent x-ray spectrometry. Anal. Chem. 40 (1968), S. 1080

    Article  CAS  Google Scholar 

  52. Budesinsky, B. W.: Theoretical correction of interelement effects: System Iron, Nickel, Chromium. X-Ray Spectrom. 4 (1975), S. 166

    Article  CAS  Google Scholar 

  53. de Jongh, W. K.: X-ray fluorescence analysis applying theoretical matrix corrections. Stainless steel. X-Ray Spectrom. 2 (1973), S.151

    Article  Google Scholar 

  54. Shiraiwa, T., u. N. Fujino: Theoretical correction procedures for x-ray fluorescence analysis. X-Ray Spectrom. 3 (1974), S.64

    Article  CAS  Google Scholar 

  55. Sparks, C. J.: Quantitative x-ray fluorescent analysis using fundamental parameters. Adv. in X-ray analysis 19(1976), S. 19

    Google Scholar 

  56. Betin, J.: Röntgenspektralanalyse von Legierungen mit Fundamentalparametern (russ.) Zavodsk. Lab. 48 (1982) 11, S. 32

    CAS  Google Scholar 

  57. Rousseau, R.: Fundamental algorithm between concentration and intensity in XRF analysis. X-Ray Spectrom. 13 (1984), S. 115 und

    Article  CAS  Google Scholar 

  58. Rousseau, R.: Fundamental algorithm between concentration and intensity in XRF analysis. X-Ray Spectrom. 13 (1984), S. 121

    Article  CAS  Google Scholar 

  59. Vrebos, B., u. J. A. Helsen: Inverse formulations of the Sherman equations for x-ray spectrometry. X-Ray Spectrom. 14 (1985), S.27

    Article  CAS  Google Scholar 

  60. Pawlinskij, G.W., J.I. Welitschko u. A.G. Revenkow: Programma rastschjota intensivno-stei analititscheskich linii rentgenowskowo spektra fluoreszenzii. Zavodsk. Lab. 43 (1977) 4, S.433

    Google Scholar 

  61. Laguitton, D., u. M. Mantler: LAMA I-A general Fortran program for quantitative X-ray fluorescence analysis. Adv. in X-ray analysis 20 (1977), S. 515

    Article  CAS  Google Scholar 

  62. Criss, J.W.: Fundamental parameters calculations on a laboratory microcomputer /XRF 11. Adv. in X-ray analysis 23 (1980), S.93

    Article  CAS  Google Scholar 

  63. Gedcke, D. A., L. G. Byars u. N. C. Jacobus: FPT: An integrated fundamental parameters program for broadband EDXRF analysis without a set of similar standards. Adv. in X-ray analysis 26 (1983), S.355

    CAS  Google Scholar 

  64. Shen, R.B., u. J. C.Russ: A simplified fundamental parameters method for quantitative energy-dispersive X-ray fluorescence analysis. X-Ray Spectrom. 6 (1977), S. 56

    Article  CAS  Google Scholar 

  65. Shen, R. B., J. Criss, J. C. Russ u. A. O. Sandberg: Modifical NRL XRF programm for energy dispersive X-ray fluorescence/(XRAY 95). Adv. in X-ray analysis 23 (1980), S. 99

    Article  CAS  Google Scholar 

  66. Vane, R. A.: A comparison of the XRF 11 and EXACT fundamental parameters programs when using filtered direct and secondary target excitation in EDXRF. Adv. in X-ray analysis 26 (1983), S. 369

    CAS  Google Scholar 

  67. Gardner, R.P., u. J.M. Doster: The reduction of matrix effects in x-ray fluorescence analysis by the Monte-Carlo fundamental parameter method. Adv. in X-ray analysis 22 (1979), S.343

    Article  CAS  Google Scholar 

  68. Gardner, R.P., L. Wielopolski u. J.M. Doster: Adaption of the fundamental parameters Monte-Carlo Simultation to EDXRF analysis with secondary fluorescer X-ray machines. Adv. in X-ray analysis 21 (1978), S. 129

    Article  CAS  Google Scholar 

  69. Rousseau, R., u. F. Claisse: Theoretical Alpha coefficients for the Claisse-Quintin relation for X-ray spectrochemical analysis. X-Ray Spectrom. 3 (1974), S.31

    Article  CAS  Google Scholar 

  70. Austen, C., u. T. Steele: The computer calculation, from fundamentals parameters, of influence coefficients for x-ray spectrometry. Adv. in X-ray analysis 18 (1975), S. 362

    Article  CAS  Google Scholar 

  71. Jenkins, R., J.F. Croke, R.L. Niemann u. R.G. Westberg: Use of calculated Alpha-coefficients in quantitative x-ray spectrometry. Adv. in X-ray analysis 18 (1975), S.372

    Article  CAS  Google Scholar 

  72. Kuczumow, A.: The concentration correction equations as a consequence of the Shiraiwa and Fujino equation. X-Ray Spectrom. 11 (1982), S. 112

    Article  CAS  Google Scholar 

  73. Broll, N., u. R. Tertian: Quantitative x-ray fluorescence analysis by use of fundamental influence coefficients. X-Ray Spectrom. 12 (1983), S. 30

    Article  CAS  Google Scholar 

  74. Mantler, M.: LAMA III — a computer program for quantitative XRFA of bulk specimens and thin film layers. Adv. in X-ray analysis 27 (1984), S.433

    Article  CAS  Google Scholar 

  75. Criss, J. W., L. S. Birks u. J. V. Gilfrich: NRL XRF — A most versatile computer program for X-ray fluorescence analysis. Anal. Chem. 50 (1978), S. 33

    Article  CAS  Google Scholar 

  76. Kalinin, B. D.: Zu den Grundlagen der Methode der theoretischen Korrekturen in der Röntgenspektralanalyse (russ.). Zavodsk. Lab. 6 (1980), S. 55

    Google Scholar 

  77. Plesch, R.: Die hybride Matrixkorrektur in der Röntgenspektrometrie. X-Ray Spectrom. 5 (1976), S. 204

    Article  Google Scholar 

  78. Tertian, R., u. R.Vie la Sage: Crossed influence coefficients for accurate X-ray fluorescence analysis of multicomponent systems. X-Ray Spectrom. 6 (1977), S. 123

    Article  CAS  Google Scholar 

  79. Bandemer, H.: Optimale Versuchsplanung. Berlin: Akademie-Verlag 1980

    Google Scholar 

  80. Mahr, C., u. G. Stork: Beiträge zur Röntgenfluoreszenzanalyse. I. Anwendung der Additionsmethode. Z. Anal. Chem. 222 (1966), S. 1–9

    Article  Google Scholar 

  81. Stork, G., u. C. Mahr: Beiträge zur Röntgenfluoreszenzanalyse. IL Gleichzeitige Bestimmung mehrerer Elemente mit Hilfe der Additionsmethode. Z. Anal. Chem. 222 (1966), S. 363–369

    Article  CAS  Google Scholar 

  82. Plesch, R.: Die Unterdrückung röntgenanalytischer Matrixeffekte durch präparative Maßnahmen. G-I-T Fachz. Lab. 20 (1976), S. 191–194

    CAS  Google Scholar 

  83. Andermann, G., u. J. W. Kemp: Scattered X-ray as internal standards in X-ray emission spectrocopy. Anal. Chem. 30 (1958), S. 1306–1309

    Article  CAS  Google Scholar 

  84. Sanner, G., u. H. Ehrhardt: Herabsetzung von Matrixeinflüssen mit Hilfe des Bremskon-tinuums. Neue Hütte 13 (1968), S. 751–754

    CAS  Google Scholar 

  85. Addink, N. W. H., H. Kraay u. A. U. Witmer: The putting to advantage of the absorbing qualities of diluting agents for obtaining 45 degree calibration curves in X-ray fluorescence analysis. IX. Coll. Spectrosc. Internat. Lyon 1961, Tome III S. 368–384

    Google Scholar 

  86. Tertian, R.: Quantitative chemical analysis with X-ray fluorescence spectrometry — an accurate and general mathematical correction method for the interelement effects. Spectro-chim. Acta B 24 (1969), S. 447–471

    CAS  Google Scholar 

  87. Gwozdz, R.: A critical survey of mixing, dilution and addition methods and possible extensions of the theory. X-Ray Spectrom. 3 (1974), S.2–14

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

About this chapter

Cite this chapter

Wehner, B., Richter, K., Kleinstück, K., Dümecke, G., Mudrack, D., Ehrhardt, H. (1989). Konzentrationsbestimmung mittels RFA. In: Röntgenfluoreszenzanalyse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52295-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52295-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52296-3

  • Online ISBN: 978-3-642-52295-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics