Skip to main content

The Effects of Photodynamic Therapy in Oral Biofilms

  • Chapter
  • First Online:
Antibiofilm Agents

Abstract

Increased drug resistance in pathogenic microorganisms, leading to a decrease in the effectiveness of antibiotic, antiviral, antiparasitic and antifungal therapy, has generated international concern. This has triggered numerous studies seeking alternative antimicrobial technologies independent of pharmacology, which resulted in success in therapeutic protocols. One of the most important examples of these innovations is antimicrobial photodynamic therapy. Since the beginning of the last century, the combined use of light and dyes has been used to eliminate microorganisms. However, this therapy was forgotten after the discovery of antibiotics in the 1950s and is returning to the research field today. Numerous studies have shown that photodynamic therapy is an effective way to eliminate microorganisms, especially those that cause infections, including those in the oral cavity. However, it is important to realise that many infectious diseases will continue to need systemic therapy. The rapid growth in the use of photodynamic therapy during recent years in dentistry illustrates the number of infections that can be treated medically in this manner in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    CAS  PubMed  Google Scholar 

  • Allison RR, Mota HC, Sibata CH (2004) Clinical PD/PDT in North America: an historical review. Photodiagnosis Photodyn Ther 1:263–277

    Google Scholar 

  • Alvarez MG, Gómez ML, Mora SJ, Milanesio ME, Durantini EM (2012) Photodynamic inactivation of Candida albicans using bridged polysilsesquioxane films doped with porphyrin. Bioorg Med Chem 20:4032–4039

    CAS  PubMed  Google Scholar 

  • Andrade MC, Ribeiro AP, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, Pavarina AC (2013) Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol 58:200–210

    CAS  Google Scholar 

  • Araujo PV, Cortes ME, de Abreu Poletto LT (2010) Photodynamic therapy of cariogenic agents: a systematic review. J Laser Appl 22:13–24

    Google Scholar 

  • Attin T, Becker K, Hannig C, Buchalla W, Wiegand A (2005) Suitability of a malachite green procedure to detect minimal amounts of phosphate dissolved in acidic solutions. Clin Oral Investig 9:203–207

    CAS  PubMed  Google Scholar 

  • Bell SG (2003) Antibiotic resistance: is the end of an era near? Neonatal Netw 22:47–54

    PubMed  Google Scholar 

  • Bertoloni G, Rossi F, Valduga G, Jori G, Ali H, van Lier JE (1992) Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. Microbios 71:33–46

    CAS  PubMed  Google Scholar 

  • Bertoloni G, Lauro FM, Cortella G, Merchat M (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta 1475:169–174

    CAS  PubMed  Google Scholar 

  • Biel MA (2010) Photodynamic therapy of bacterial and fungal biofilm infections. Methods Mol Biol 635:175–194

    CAS  PubMed  Google Scholar 

  • Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 48:2000–2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolean M, Paulino TP, Thedei G Jr, Ciancaglini P (2010) Photodynamic therapy with rose bengal induces GroEL expression in Streptococcus mutans. Photomed Laser Surg 28:S79–S84

    CAS  PubMed  Google Scholar 

  • Bonsor SJ, Nichol R, Reid TM, Pearson GJ (2006) An alternative regimen for root canal disinfection. Br Dent J 201:101–105

    CAS  PubMed  Google Scholar 

  • Brown SB, Brown EA, Walker I (2004) The present and the future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508

    CAS  PubMed  Google Scholar 

  • Canete M, Villanueva A, Juarranz A (1993) Uptake and photoeffectiveness of two thiazines in HeLa cells. Anticancer Drug Des 8:471–477

    CAS  PubMed  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1:279–293

    CAS  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang SS (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8:154–163

    PubMed  Google Scholar 

  • Collins TL, Markus EA, Hassett DJ, Robinson JB (2010) The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr Microbiol 61:411–416

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Creagh TA, Gleeson M, Travis D, Grainger R, McDermott TE, Butler MR (1995) Is there a role for in vivo methylene blue staining in the prediction of bladder tumour recurrence? Br J Urol 75:477–479

    CAS  PubMed  Google Scholar 

  • Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections—state of the art. Photodiagnosis Photodyn Ther 6:170–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    CAS  PubMed  Google Scholar 

  • Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12

    CAS  PubMed  Google Scholar 

  • Dougherty TJ, Marcus SL (1992) Photodynamic therapy. Eur J Cancer 28A:1734–1742

    CAS  PubMed  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    CAS  PubMed  Google Scholar 

  • Eick S, Markauskaite G, Nietzsche S, Laugisch O, Salvi GE, Sculean A (2013) Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis. Photodiagnosis Photodyn Ther 10:156–167, http://dx.doi.org/10.1016/j.pdpdt.2012.12.001

    CAS  PubMed  Google Scholar 

  • Feres M, Haffajee AD, Allard K, Som S, Goodson JM, Socransky SS (2002) Antibiotic resistance of subgingival species during and after antibiotic therapy. J Clin Periodontol 29:724–735

    CAS  PubMed  Google Scholar 

  • Foschi F, Fontana CR, Ruggiero K, Riahi R, Vera A, Doukas AG, Pagonis TC, Kent R, Stashenko PP, Soukos NS (2007) Photodynamic inactivation of Enterococcus faecalis in dental root canals in vitro. Lasers Surg Med 39:782–787

    PubMed  Google Scholar 

  • Garcez AS, Ribeiro MS, Tegos GP, Nunez SC, Jorge AO, Hamblin MR (2007) Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med 39:59–66

    PubMed Central  PubMed  Google Scholar 

  • Garcez AS, Nunez SC, Hamblin MR, Ribeiro MS (2008) Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod 34:138–142

    PubMed Central  PubMed  Google Scholar 

  • Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26:281–287

    PubMed  Google Scholar 

  • Glass RT, Bullard JW, Hadley CS, Mix EW, Conrad RS (2001) Partial spectrum of microorganisms found in dentures and possible disease implications. J Am Osteopath Assoc 101:92–94

    CAS  PubMed  Google Scholar 

  • Gonzales FP, Maisch T (2012) Photodynamic inactivation for controlling Candida albicans infections. Fungal Biol 116:1–10

    CAS  Google Scholar 

  • Greenwell H, Bissada NF (2002) Emerging concepts in periodontal therapy. Drugs 62:2581–2587

    CAS  PubMed  Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison JW, Svec TA (1998) The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse. Quintessence Int 29:223–229

    CAS  PubMed  Google Scholar 

  • Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    CAS  PubMed  Google Scholar 

  • Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38:468–481

    PubMed  Google Scholar 

  • Junqueira JC, Ribeiro MA, Rossoni RD, Barbosa JO, Querido SM, Jorge AO (2010) Antimicrobial photodynamic therapy: photodynamic antimicrobial effects of malachite green on Staphylococcus, Enterobacteriaceae, and Candida. Photomed Laser Surg 28:S67–S72

    CAS  PubMed  Google Scholar 

  • Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J (2004) Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci 19:139–149

    PubMed  Google Scholar 

  • Kim SY, Kwon OJ, Park JW (2001) Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie 83:437–444

    CAS  PubMed  Google Scholar 

  • Kishen A, Upadya M, Tegos GP, Hamblin MR (2010) Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol 86:1343–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47:932–940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86:694–707

    CAS  PubMed  Google Scholar 

  • Kreth J, Hagerman E, Tam K, Merritt J, Wong DT, Wu BM, Myung MV, Shi W, Qi F (2004) Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy. Biofilms 1:277–284

    PubMed Central  PubMed  Google Scholar 

  • Kübler AC (2005) Photodynamic therapy. Med Laser Appl 20:37–45

    Google Scholar 

  • Kübler AC, Scheer M, Zöller JE (2001) Photodynamic therapy of head and neck cancer. Onkologie 224:230–237

    Google Scholar 

  • Lee CF, Lee CJ, Chen CT, Huang CT (2004) delta-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. J Photochem Photobiol B 75:21–25

    CAS  PubMed  Google Scholar 

  • Lee YH, Park HW, Lee JH, Seo HW, Lee SY (2012) The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int J Oral Sci 4:196–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Guo H, Tian Q, Zheng G, Hu Y, Fu Y, Tan H (2013) Effects of 5-aminolevulinic acid-mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res. doi:10.1016/j.jss.2013.03.094

    PubMed Central  Google Scholar 

  • Lingen MW, Kalmar JR, Karrison T, Speight PM (2008) Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol 44:10–22

    PubMed Central  PubMed  Google Scholar 

  • Lui H, Anderson RR (1992) Photodynamic therapy in dermatology: shedding a different light on skin disease. Arch Dermatol 128:1631–1636

    CAS  PubMed  Google Scholar 

  • Malik Z, Ladan H, Nitzan Y (1992) Photodynamic inactivation of gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B 14:262–266

    CAS  PubMed  Google Scholar 

  • Malik R, Manocha A, Suresh DK (2010) Photodynamic therapy—a strategic review. Indian J Dent Res 21:285–291

    PubMed  Google Scholar 

  • Manch-Citron JN, Lopez GH, Dey A, Rapley JW, MacNeill SR, Cobb CM (2000) PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy: a preliminary report. J Clin Periodontol 27:437–446

    CAS  PubMed  Google Scholar 

  • Mang TS, Tayal DP, Baier R (2012) Photodynamic therapy as an alternative treatment for disinfection of bacteria in oral biofilms. Lasers Surg Med 44:588–596

    PubMed  Google Scholar 

  • Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 79:159–170

    CAS  PubMed  Google Scholar 

  • Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996a) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153–157

    CAS  PubMed  Google Scholar 

  • Merchat M, Spikes JD, Bertoloni G, Jori G (1996b) Studies on the mechanism of bacteria photosensitization by mesosubstituted cationic porphyrins. J Photochem Photobiol B 35:149–157

    CAS  PubMed  Google Scholar 

  • Metcalf D, Robinson C, Devine D, Wood S (2006) Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 58:190–192

    CAS  PubMed  Google Scholar 

  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown ST (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B 32:159–164

    CAS  PubMed  Google Scholar 

  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller HP, Holderrieth S, Burkhardt U, Hoffler U (2002) In vitro antimicrobial susceptibility of oral strains of Actinobacillus actinomycetemcomitans to seven antibiotics. J Clin Periodontol 29:736–742

    PubMed  Google Scholar 

  • Nagata JY, Hioka N, Kimura E, Batistela VR, Terada RS, Graciano AX, Baesso ML, Hayacibara MF (2012) Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagnosis Photodyn Ther 9:122–131

    CAS  PubMed  Google Scholar 

  • Nitzan Y, Gutterman M, Malik Z, Ehrenberg B (1992) Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem Photobiol 55:89–96

    CAS  PubMed  Google Scholar 

  • Nitzan Y, Dror R, Ladan H, Malik Z, Kimel S, Gottfried V (1995) Structure-activity relationship of porphines for photoinactivation of bacteria. Photochem Photobiol 62:342–347

    CAS  PubMed  Google Scholar 

  • Ochsner M (1997a) Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases. Arzneimittelforschung 47:1185–1194

    CAS  PubMed  Google Scholar 

  • Ochsner M (1997b) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 39:1–18

    CAS  PubMed  Google Scholar 

  • Ojetti V, Persiani R, Nista EC, Rausei S, Lecca G, Migneco A, Cananzi FC, Cammarota G, D’Ugo D, Gasbarrini G, Gasbarrini A (2007) A case-control study comparing methylene blue directed biopsies and random biopsies for detecting pre-cancerous lesions in the follow-up of gastric cancer patients. Eur Rev Med Pharmacol Sci 11:291–296

    CAS  PubMed  Google Scholar 

  • Paardekooper M, Van Gompel AE, Van Steveninck J, Van den Broek PJ (1995) The effect of photodynamic treatment of yeast with the sensitizer chloroaluminumphthalocyanine on various cellular parameters. Photochem Photobiol 62:561–567

    CAS  PubMed  Google Scholar 

  • Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26:341–348

    PubMed  Google Scholar 

  • Pervaiz S (2001) Reactive oxigen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617

    CAS  PubMed  Google Scholar 

  • Pieslinger A, Plaetzer K, Oberdanner CB, Berlanda J, Mair H, Krammer B, Kiesslich T (2006) Characterization of a simple and homogenous irradiation device based on light-emitting diodes: a possible low-cost supplement to conventional light sources for photodynamic treatment. Med Laser Appl 21:277–283

    Google Scholar 

  • Prates RA, Yamada AM Jr, Suzuki LC, Eiko Hashimoto MC, Cai S, Gouw-Soares S, Gomes L, Ribeiro MS (2007) Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B 86:70–76

    CAS  PubMed  Google Scholar 

  • Qian Z, Sagers RD, Pitt WG (1997) The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng 25:69–76

    CAS  PubMed  Google Scholar 

  • Ramage G, Vandewalle K, Wickes BL, López-Ribot JL (2001) Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170

    CAS  PubMed  Google Scholar 

  • Ribeiro DG, Pavarina AC, Dovigo LN, Palomari Spolidorio DM, Giampaolo ET, Vergani CE (2009) Denture disinfection by microwave irradiation: a randomized clinical study. J Dent 37:666–672

    PubMed  Google Scholar 

  • Romanova NA, Brovko LY, Moore L, Pometun E, Savitsky AP, Ugarova NN, Griffiths MW (2003) Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP bioluminescence. Appl Environ Microbiol 69:6393–6398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryder MI (2002) An update on HIV and periodontal disease. J Periodontol 73:1071–1078

    PubMed  Google Scholar 

  • Saino E, Sbarra MS, Arciola CR, Scavone M, Bloise N, Nikolov P, Ricchelli F, Visai L (2010) Photodynamic action of Tri-meso (N-methylpyridyl), meso (N-tetradecyl-pyridyl) porphine on Staphylococcus epidermidis biofilms grown on Ti6Al4V alloy. Int J Artif Organs 33:636–645

    CAS  PubMed  Google Scholar 

  • Schafer M, Schmitz C, Horneck G (1998) High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. Int J Radiat Biol 74:249–253

    CAS  PubMed  Google Scholar 

  • Sharman WM, Allen CM, van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4:507–517

    CAS  PubMed  Google Scholar 

  • Simplicio FI, Maionchi F, Hioka N (2002) Terapia fotodinâmica: aspectos farmacológicos, aplicações e avanços recentes no desenvolvimento de medicamentos. Quim Nova 25:801–807

    CAS  Google Scholar 

  • Soukos NS, Goodson JM (2011) Photodynamic therapy in the control of oral biofilms. Periodontology 2000 55:143–166

    PubMed  Google Scholar 

  • Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389

    PubMed  Google Scholar 

  • Steiner R (2006) New laser technology and future applications. Med Laser Appl 21:131–140

    Google Scholar 

  • Sternberg ED, Dolphin D (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202

    CAS  Google Scholar 

  • Tardivo JP, Giglio AD, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RF, Baptista MS (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther 2:175–191

    CAS  Google Scholar 

  • Turro NJ (1991) Modern molecular photochemistry. University Science, Sausalito, CA

    Google Scholar 

  • Usacheva MN, Teichert MC, Biel MA (2003) The interaction of lipopolysaccharides with phenothiazine dyes. Lasers Surg Med 33:311–319

    PubMed  Google Scholar 

  • Vahabi S, Fekrazad R, Ayremlou S, Taheri S, Zangeneh N (2011) The effect of antimicrobial photodynamic therapy with radachlorin and toluidine blue on Streptococcus mutans: an in vitro study. J Dent 8:48–54

    CAS  Google Scholar 

  • Vilela SF, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AO (2012) Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol 57:704–710

    CAS  PubMed  Google Scholar 

  • Vitkov L, Hannig M, Krautgartner WD, Fuchs K (2002) Bacterial adhesion to sulcular epithelium in periodontitis. FEMS Microbiol Lett 211:239–246

    CAS  PubMed  Google Scholar 

  • Wainwright M, Crossley KB (2004) Photosensitising agents-circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegradation 53:119–126

    CAS  Google Scholar 

  • Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ (1997) A study of photobactericidal activity in the phenothiazinium series. FEMS Immunol Med Microbiol 19:75–80

    CAS  PubMed  Google Scholar 

  • Wainwright M, Mohr H, Walker WH (2007) Phenothiazinium derivatives for pathogen inactivation in blood products. J Photochem Photobiol B 86:45–58

    CAS  PubMed  Google Scholar 

  • Walker CB (1996) The acquisition of antibiotic resistance in the periodontal microflora. Periodontol 2000(10):79–88

    Google Scholar 

  • Wei GX, Campagns AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109

    CAS  PubMed  Google Scholar 

  • Welin J, Wilkins JC, Beighton D, Wrzesinski K, Fey SJ, Mose-Larsen P, Hamilton IR, Svensater G (2003) Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 227:287–293

    CAS  PubMed  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    CAS  PubMed  Google Scholar 

  • Wilson M (1993) Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J Appl Bacteriol 75:299–306

    CAS  PubMed  Google Scholar 

  • Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    CAS  PubMed  Google Scholar 

  • Wilson M, Burns T, Pratten J, Pearson GJ (1995) Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 78:569–574

    CAS  PubMed  Google Scholar 

  • Wilson M, Burns T, Pratten J (1996) Killing of Streptococcus sanguis in biofilms using a light-activated antimicrobial agent. J Antimicrob Chemother 37:377–381

    CAS  PubMed  Google Scholar 

  • Wong TW, Wang YY, Sheu HM, Chuang YC (2005) Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob Agents Chemother 49:895–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood S, Metcalf D, Devine D, Robinson C (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57:680–684

    CAS  PubMed  Google Scholar 

  • Yordanov M, Dimitrova P, Patkar S, Saso L, Ivanovska N (2008) Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Can J Microbiol 54:435–440

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Peneluppi Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, M.P., Junqueira, J.C., Jorge, A.O.C. (2014). The Effects of Photodynamic Therapy in Oral Biofilms. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_20

Download citation

Publish with us

Policies and ethics