Skip to main content

A Label Propagation-Based Algorithm for Community Discovery in Online Social Networks

  • Conference paper
Advanced Data Mining and Applications (ADMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8346))

Included in the following conference series:

  • 2415 Accesses

Abstract

With the rapid development of Internet and Web 2.0 applications, many different patterns of online social networks become fashionable all over the world. These sites help people share and exchange information, as well as maintain their social relations on the Internet. Therefore, it is very important to study the structure of communities in online social network.

Most of existed community discovery algorithms are very costly. Moreover, the behavior of users in online social networks is rather dynamic. We first investigate Label Propagation Algorithm (LPA), which has near linear time complexity and discuss some limitations of LPA. Then, we propose a new algorithm for community discovery based on label influence vector (LIVB), an improved variation of LPA. In this algorithm, we abstract several types of nodes corresponding to different kinds of entities such as users, posts, videos as well as comments. Different types of relations between nodes are also taken into account. A node will update its label by calculating its label influence vector. We conduct experiments on crawled real data and the experimental results show that communities discovered by LIVB algorithm have more concentrative topics. The quality of the communities is improved and LIVB algorithm remains a near linear time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albert, R., Barabsi, A.L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fortunato, S.: Community Detection in Graphs. Physics Reports 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  4. Alba, R.D.: A Graph–Theoretic Definition of a Sociometric Cique. Journal of Mathematical Sociology 3(1), 113–126 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Yang, B., Cheung, W.K., Liu, J.: Community Mining from Signed Social Networks. IEEE Transactions on Knowledge and Data Engineering 19(10), 1333–1348 (2007)

    Article  Google Scholar 

  7. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Kim, D.H., Jeong, H.: Systematic Analysis of Group Identification in Stock Markets. Physical Review E 72(4), 46133 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fiedler, M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23(2), 298–305 (1973)

    MathSciNet  Google Scholar 

  10. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  11. Kernighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs. Bell System Technical 49(1), 291–307 (1970)

    Article  MATH  Google Scholar 

  12. Danon, L., Daz-Guilera, A., Arenas, A.: The Effect of Size Heterogeneity on Community Identification in Complex Networks. Journal of Statistical Mechanics: Theory and Experiment 2006(11), P11010 (2006)

    Google Scholar 

  13. Burt, R.S.: Positions in Networks. Social Forces 55(1), 93–122 (1976)

    MathSciNet  Google Scholar 

  14. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)

    Google Scholar 

  15. Radicchi, F., Castellano, C., Cecconi, F., et al.: Defining and Identifying Communities in Networks. Proceedings of the National Academy of Sciences of the United States of America 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  16. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM (JACM) 46(5), 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pirolli, P., Pitkow, J., Rao, R.: Silk from a Sow’s Ear: Extracting Usable Structures from the Web. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Common Ground, pp. 118–125. ACM (1996)

    Google Scholar 

  18. Raghavan, U.N., Albert, R., Kumara, S.: Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks. Physical Review E 76(3), 036106 (2007)

    Google Scholar 

  19. Leung, I.X.Y., Hui, P., Li, P., et al.: Towards real-time community detection in large networks. Physical Review E 79(6), 066107 (2009)

    Google Scholar 

  20. Tibly, G., Kertsz, J.: On the Equivalence of the Label Propagation Method of Community Detection and a Potts Model Approach. Physica A: Statistical Mechanics and its Applications 387(19), 4982–4984 (2008)

    Article  Google Scholar 

  21. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69(2), 026113 (2004)

    Google Scholar 

  22. Wang, Y., Feng, X.: A Potential-Based Node Selection Strategy for Influence Maximization in a Social Network. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS, vol. 5678, pp. 350–361. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  24. De Choudhury, A., et al.: Social Synchrony: Predicting Mimicry of User Actions in Online Social Media. In: International Conference on Computational Science and Engineering 2009, CSE 2009, pp. 151–158. IEEE CPS, Vancouver (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Zhao, Y., Zhao, Z., Liao, Z. (2013). A Label Propagation-Based Algorithm for Community Discovery in Online Social Networks. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53914-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53914-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53913-8

  • Online ISBN: 978-3-642-53914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics