Skip to main content

Marine Microbial Enzymes: Current Status and Future Prospects

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Due to unique metabolic capabilities the marine microorganisms are excellent natural resource for screening of novel molecules. Marine microbial enzymes are of special interest for their distinct habitat-related features. Published literatures agree with potential biotechnological, biomedical and industrial applications of several marine microbial enzymes. These enzymes attracted substantial attention for their novel chemical and stereochemical characteristics that may be exploited in chemical or pharmaceutical synthesis. A couple of marine microbial enzymes are already being used for industrial and pharmaceutical purposes. Marine biotechnology research is boosted by recent development of several molecular biology and bioinformatics tools. Study of marine microbial enzymes is now focused on multiple directions including screening, recombinant production, characterization and structure analysis of enzymes, and optimization of process parameters for their systematic and inexpensive production. Published literatures suggest potential applications of marine microbial enzymes in wide range of industries but more focused application-oriented research is essential for exploitation of their full biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

angiotensin-converting enzyme

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

ORF:

open reading frame

PCR:

polymerase chain reaction

RT-PCR:

reverse transcription-polymerase chain reaction

cDNA:

complementary DNA

References

  1. W.A. Hassanein, E. Kotb, N.M. Awny, Y.A. El-Zawahry: Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42, J. Biosci. 36, 1–7 (2011)

    Article  Google Scholar 

  2. H. Li, Z. Chi, X. Wang, X. Duan, L. Ma, L. Gao: Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion, Enzym. Microb. Technol. 40, 1006–1012 (2007)

    Article  CAS  Google Scholar 

  3. D. Zhu, H.T. Malik, L. Hua: Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents, Tetrahedron Asymmetry 17, 3010–3014 (2006)

    Article  CAS  Google Scholar 

  4. K.S. Lundberg, D.D. Shoemaker, M.W.W. Adams, J.M. Short, J.A. Sorge, E.J. Mathur: High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus, Gene 108, 1–6 (1991)

    Article  CAS  Google Scholar 

  5. E.Y. Plisova, L.A. Balabanova, E.P. Ivanova, V.B. Kozhemyako, V.V. Mikhailov, E.V. Agafonova, V.A. Rasskazov: A highly active alkaline phosphatase from the marine bacterium Cobetia, Mar. Biotechnol. 7, 173–178 (2005)

    Article  CAS  Google Scholar 

  6. Verenium-Fuelzym. Fuelzyme enzyme is a next generation alpha amylase for starch liquefaction. Available online: http://www.verenium.com/products_fuelzyme.html (accessed on March 22 2012)

  7. K. Egorova, G. Antranikian: Industrial relevance of thermophilic Archaea, Curr. Opin. Microbiol. 8, 649–655 (2005)

    Article  CAS  Google Scholar 

  8. L. Cornec, J. Robineau, J.L. Rolland, J. Dietrich, G. Barbier: Thermostable esterases screened on hyperthermophilic archaeal and bacterial strains isolated from deep-sea hydrothermal vents: Characterization of esterase activity of a hyperthermophilic archaeum, Pyrococcus abyssi, J. Mar. Biotechnol. 6, 104–110 (1998)

    CAS  Google Scholar 

  9. K.S. Hung, S.M. Liu, W.S. Tzou, F.P. Lin, C.L. Pan, T.Y. Fang, K.H. Sun, S.J. Tang: Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1, Process Biochem. 46, 1257–1263 (2011)

    Article  CAS  Google Scholar 

  10. E. Legin, C. Ladrat, A. Godfroy, G. Barbier, F. Duchiron: Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents, Comptes Rendus de l'Academie des Sciences – Serie III 320, 893–898 (1997)

    Article  Google Scholar 

  11. Y. Seong-Ae, S.I. Ryu, S.B. Lee, T.W. Moon: Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus, J. Microbiol. Biotechnol. 18, 457–464 (2008)

    Google Scholar 

  12. A. Chien, D.B. Edgar, J.M. Trela: Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus, J. Bacteriol. 127, 1550–1557 (1976)

    CAS  Google Scholar 

  13. H. Kobori, C.W. Sullivan, H. Shizuya: Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5'end labelling of nucleic acids, Proc. Natl. Acad. Sci. USA 81, 6691–6695 (1984)

    Article  CAS  Google Scholar 

  14. T. Collins, A. Hoyoux, A. Dutron, J. Georis, B. Genot, T. Dauvrin, F. Arnaut, C. Gerday, G. Feller: Use of glycoside hydrolase family 8 xylanases in baking, J. Cereal Sci. 43, 79–84 (2006)

    Article  CAS  Google Scholar 

  15. J.H. Jeon, J.T. Kim, Y.J. Kim, H.K. Kim, H.S. Lee, S.G. Kang, S.J. Kim, J.H. Lee: Cloning and characterization of a new cold-active lipase from a deep-sea sediment Metagenome, Appl. Microbiol. Biotechnol. 81, 865–874 (2009)

    Article  CAS  Google Scholar 

  16. A. Trincone: Marine biocatalysts: Enzymatic features and applications, Mar. Drugs 9, 478–499 (2011)

    Article  CAS  Google Scholar 

  17. J.W. Zhang, R.Y. Zeng: Cloning, expression and characterization of the cold active lipase (Lip3) from metagenomic DNA of an antarctic deep sea sediment, Prog. Biochem. Biophys. 33, 1207–1214 (2006)

    CAS  Google Scholar 

  18. J. Zhang, S. Lin, R. Zeng: Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychorotrophic bacterium, Psychobacter sp. 7195, J. Microbiol. Biotechnol. 17, 604–610 (2007)

    Google Scholar 

  19. J.W. Zhang, R.Y. Zeng: Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323, Mar. Biotechnol. 10, 612–621 (2008)

    Article  CAS  Google Scholar 

  20. X. Lin, X. Yang, J. Bian, X. Huang: Study on low-temperature lipase of psychrophilic bacterium 2-5-10-1 isolated from deep sea of Southern Ocean, Acta Oceanol. Sin. 22, 643–650 (2003)

    CAS  Google Scholar 

  21. R.A. Khudary, R. Venkatachalam, M. Katzer, S. Elleuche, G. Antranikian: A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: Gene cloning, enzyme purification and characterization, Extremophiles 14, 273–285 (2010)

    Article  Google Scholar 

  22. M.K. Gouda: Optimization and purification of alkaline proteases produced by marine Bacillus sp. MIG newly isolated from eastern harbour of Alexandria, Pol. J. Microbiol. 55, 119–126 (2006)

    Article  CAS  Google Scholar 

  23. C.G. Kumar, H.S. Joo, Y.M. Koo, S.R. Paik, C.S. Chang: Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate, World J. Microbiol. Biotechnol. 20, 351–357 (2004)

    Article  CAS  Google Scholar 

  24. R.V. Greene, H.L. Griffin, M.A. Cotta: Utility of alkaline protease from marine shipworm bacterium in industrial cleansing applications, Biotechnol. Letters 18, 7590–7764 (1996)

    Article  Google Scholar 

  25. M. Sebastian, J.W. Ammerman: The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA, ISME J. 3, 563–572 (2009)

    Article  CAS  Google Scholar 

  26. G.M. Abou-Elela, H.A.H. Ibrahim, S.W. Hassan, H. Abd-Elnaby, N.M.K. El-Toukhy: Alkaline protease production by alkaliphilic marine bacteria isolated from Marsa-Matrouh (Egypt) with special emphasis on Bacillus cereus purified protease, Afr. J. Biotechnol. 10, 4631–4642 (2011)

    CAS  Google Scholar 

  27. S. Chakraborty, A. Khopade, C. Kokare, K. Mahadik, B. Chopade: Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1, J. Mol. Catal. B: Enzym. 58, 17–23 (2009)

    Article  CAS  Google Scholar 

  28. S. Chakraborty, A. Khopade, R. Biao, W. Jian, X.Y. Liu, K. Mahadik, B. Chopade, L. Zhang, C. Kokare: Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9, J. Mol. Catal. B: Enzym. 68, 52–58 (2011)

    Article  CAS  Google Scholar 

  29. M. Matsumoto, H. Yokouchi, N. Suzuki, H. Ohata, T. Matsunaga: Saccharification of marine microalgae using marine bacteria for ethanol production, Appl. Biochem. Biotechnol. 105, 247–254 (2003)

    Article  Google Scholar 

  30. F.C. Marhuenda-Egea, M.J. Bonete: Extreme halophilic enzymes in organic solvents, Curr. Opin. Biotechnol. 13, 385–389 (2002)

    Article  CAS  Google Scholar 

  31. G.A. Sellek, J.B. Chaudhuri: Biocatalysis in organic media using enzymes from extremophiles, Enzym. Microb. Technol. 25, 471–482 (1999)

    Article  CAS  Google Scholar 

  32. V. Neelambari, V. Vasanthabharathi, R. Balasubramanian, S. Jayalakshmi: Lipase from marine Aeromonas hydrophila, Res. J. Microbiol. 6, 658–668 (2011)

    Article  CAS  Google Scholar 

  33. B. Sana, D. Ghosh, M. Saha, J. Mukherjee: Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans, Process Biochem. 42, 1571–1578 (2007)

    Article  CAS  Google Scholar 

  34. R. Hayashi: Use of High Pressure in Bioscience and Biotechnology. In: High Pressure Bioscience and Biotechnology, ed. by R. Hayashi, C. Balny (Elsevier, London 1996) pp. 1–6

    Google Scholar 

  35. F. Abe, K. Horikoshi: The biotechnological potential of piezophiles, Trends Biotechnol. 19, 102–108 (2001)

    Article  CAS  Google Scholar 

  36. S. Damare, C. Raghukumar, U.D. Muraleedhran, S. Raghukumar: Deep-sea fungi as a source of alkaline and cold-tolerant proteases, Enzym. Microb. Technol. 39, 172–181 (2006)

    Article  CAS  Google Scholar 

  37. P.C. Michels, D.S. Clark: Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen, Appl. Environ. Microbiol. 63, 3985–3991 (1997)

    CAS  Google Scholar 

  38. N.N. Shah, D.C. Clark: Partial purification and characterization of two hydrogenases from the extreme thermophile Methanococcus jannaschii, Appl. Environ. Microbiol. 56, 858–863 (1990)

    CAS  Google Scholar 

  39. D. Ghosh, M. Saha, B. Sana, J. Mukherjee: Marine enzymes, Adv. Biochem. Eng./Biotechnol. 96, 189–218 (2005)

    Google Scholar 

  40. A. Trincone: Potential biocatalysts originating from sea environments, J. Mol. Catal. B: Enzym. 66, 241–256 (2010)

    Article  CAS  Google Scholar 

  41. C. Zhang, S.K. Kim: Research and application of marine microbial enzymes: Status and prospects, Mar. Drugs 8, 1920–1934 (2010)

    Article  CAS  Google Scholar 

  42. DNA polymerase having reverse transcripcase activity, rTth DNA Polymerase. Available online: http://www.toyobo-global.com/seihin/xr/lifescience/products/pcr_005.html (accessed on February 20 2013)

  43. ArcticZymes website: http://www.arcticzymes.com/category/products/

  44. M. Mahmoudian, J. Eddy, M. Dowson: Enzymic acylation of 506U78 (2-amino-9-β-D-arabinofuranosyl-6-methoxy-9H-purine), a powerful new anti-leukaemic agent, Biotechnol. Appl. Biochem. 29, 229–233 (1999)

    CAS  Google Scholar 

  45. J.M. Choi, H.G. Kim, J.S. Kim, H.S. Youn, S.H. Eom, S.L. Yu, S.W. Kim, S.H. Lee: Purification, crystallization and preliminary X-ray crystallographic analysis of a methanol dehydrogenase from the marine bacterium Methylophaga aminisulfidivorans MP${}^{{\mathrm{T}}}$, Acta Cryst. F67, 513–516 (2011)

    Google Scholar 

  46. Y. Hatada, N. Masuda, M. Akita, M. Miyazaki, Y. Ohta, K. Horikoshi: Oxidatively stable maltopentaose-producing α-amylase from a deep-sea Bacillus isolate, and mechanism of its oxidativestability validated by site-directed mutagenesis, Enzym. Microb. Technol. 39, 1333–1340 (2006)

    Article  CAS  Google Scholar 

  47. K. Sakaguchi, M. Kiyohara, N. Watanabe, K. Yamaguchi, M. Ito, T. Kawamura, I. Tanaka: Preparation and preliminary X-ray analysis of the catalytic module of β-1,3-xylanase from the marine bacterium Vibrio sp. AX-4, Acta Cryst. D60, 1470–1472 (2004)

    CAS  Google Scholar 

  48. S.M. Basheer, S. Chellappan, P.S. Beena, R.K. Sukumaran, K.K. Elyas, M. Chandrasekaran: Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment, New Biotechnol. 28, 627–638 (2011)

    Article  CAS  Google Scholar 

  49. R. Khandeparker, P. Verma, D. Deobagker: A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: Gene cloning and sequencing, New Biotechnol. 28, 814–821 (2011)

    Article  CAS  Google Scholar 

  50. G. Menon, K. Mody, J. Keshri, B. Jha: Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1, Biotechnol. Bioprocess Eng. 15, 998–1005 (2010)

    Article  CAS  Google Scholar 

  51. X. Ni, Z. Chi, C. Ma, C. Madzak: Cloning, characterization, and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10, Mar. Biotechnol. 10, 319–327 (2008)

    Article  CAS  Google Scholar 

  52. X. Ni, L. Yue, Z. Chi, J. Li, X. Wang, C. Madzak: Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the proteasesSurface display on Yarrowia lipolytica for bioactive peptide production, Mar. Biotechnol. 11, 81–89 (2009)

    Article  CAS  Google Scholar 

  53. H. Tsujibo, K. Miyamoto, K. Tanaka, M. Kawai, K. Tainaka, C. Imada, Y. Okami, Y. Inamori: Cloning and sequence of an alkaline serine protease-encoding gene from the marine bacterium Alteromonas sp, strain O-7, Gene 136, 247–251 (1993)

    CAS  Google Scholar 

  54. H. Tsujibo, K. Miyamoto, K. Tanaka, Y. Kaidzu, C. Imada, Y. Okami, Y. Inamori: Cloning and sequence analysis of a protease-encoding gene from the marine bacterium Alteromonas sp. strain O-7, Biosci. Biotechnol. Biochem. 60, 1284–1288 (1996)

    Article  CAS  Google Scholar 

  55. C. Jasmin, S. Chellappan, R.K. Sukumaran, K.K. Elyas, S.G. Bhat, M. Chandrasekaran: Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10, World J. Microbiol. Biotechnol. 26, 1269–1279 (2010)

    Article  CAS  Google Scholar 

  56. L.P. Parra, F. Reyes, J.P. Acevedo, O. Salazar, B.A. Andrews, J.A. Asenjo: Cloning and fusion expression of a cold-active lipase from marine Antarctic origin, Enzyme Microb. Technol. 42, 371–377 (2008)

    Article  CAS  Google Scholar 

  57. F. Hardeman, S. Sjoling: Metagenomic approach for the isolation of a novel low-temperature-active lipase fromuncultured bacteria of marine sediment, FEMS Microbiol. Ecol. 59, 524–534 (2007)

    Article  Google Scholar 

  58. X. Chu, H. He, C. Guo, B. Sun: Identification of two novel esterases from a marine metagenomic library derived from south China sea, Appl. Microbiol. Biotechnol. 80, 615–625 (2008)

    Article  CAS  Google Scholar 

  59. S. Xu, Y. Hu, A. Yuan, B. Zhu: Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library, Acta Microbiol. Sin. 50, 891–896 (2010)

    CAS  Google Scholar 

  60. Y. Okamura, T. Kimura, H. Yokouchi, M. Meneses-Osorio, M. Katoh, T. Matsunaga, H. Takeyama: Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria, Mar. Biotechnol. 12, 395–402 (2010)

    Article  CAS  Google Scholar 

  61. J. Liu, Y. Lei, X. Zhang, Y. Gao, Y. Xiao, H. Peng: Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms, Mar. Biotechnol. 14, 253–260 (2012)

    Article  CAS  Google Scholar 

  62. N. Aghajari, F.V. Petegen, V. Villeret, J.P. Chessa, C. Gerday, R. Haser, J.V. Beeumen: Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases, Proteins: Struct. Funct. Genet. 50, 636–647 (2003)

    Article  CAS  Google Scholar 

  63. S.C. Zhang, M. Sun, T. Li, Q.H. Wang, J.H. Hao, Y. Han, X.J. Hu, M. Zhou, S.X. Lin: Structure analysis of a new psychrophilic marine protease, PLoS One, e26939 (2011)

    Google Scholar 

  64. Z. Chi, C. Ma, P. Wang, H.F. Li: Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans, Bioresour. Technol. 98, 534–538 (2007)

    Article  CAS  Google Scholar 

  65. M. Elibol, A.R. Moriera: Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae, Process Biochem. 38, 1445–1450 (2003)

    Article  CAS  Google Scholar 

  66. M. Elibol, A.R. Moriera: Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation, Process Biochem. 40, 1951–1956 (2005)

    Article  CAS  Google Scholar 

  67. C. Estrada-Badillo, F.J. Marquez-Rocha: Effect of agitation rate on biomass and protease production by a marine bacterium Vibrio harveyi cultured in a fermentor, World J. Microbiol. Biotechnol. 19, 129–133 (2003)

    Article  CAS  Google Scholar 

  68. S. Sarkar, D. Roy, J. Mukherjee: Enhanced protease production in a polymethylmethacrylate conico-cylindrical flask by two biofilm-forming bacteria, Bioresour. Technol. 102, 1849–1855 (2011)

    Article  CAS  Google Scholar 

  69. R. Ping, M. Sun, J. Liu, Y. Wang, J. Hao, S. Zhang: Optimization of fermentation conditions for marine Bacillus licheniformis MP-2 esterase by response surface methodology, Chin. J. Appl. Env. Biol. 14, 548–552 (2008)

    CAS  Google Scholar 

  70. J. Liu, Z. Zhang, Z. Liu, H. Zhu, H. Dang, J. Lu, Z. Cui: Production of cold-adapted amylase by marine bacterium Wangia sp, C52: Optimization, modeling, and partial characterization, Mar. Biotechnol. 13, 837–844 (2011)

    CAS  Google Scholar 

  71. G. Ravot, D. Buteux, O. Favre-Bulle, D. Wahler, T. Veit, F. Lefevre: Screening for thermostable esterases: From deep sea to industry, Eng. Life Sci. 4, 533–538 (2004)

    Article  CAS  Google Scholar 

  72. K. Muffler, R. Ulber: Downstream processing in marine biotechnology, Adv. Biochem. Eng. Biotechnol. 97, 63–103 (2005)

    CAS  Google Scholar 

  73. A. Dutron, J. Georis, B. Genot, T. Dauvrin, T. Collins, A. Hoyoux, G. Feller: Use of family 8 enzymes with xylanolytic activity in baking 20070054011 (2007)

    Google Scholar 

  74. J. Georis, T. Dauvrin, A. Hoyoux, T. Collins, G. Feller: Novel xylanases and their use 20080020088 (2008)

    Google Scholar 

  75. J.P. Rasor, E. Voss: Enzyme-catalyzed processes in pharmaceutical industry, Appl. Catal. A: Gen. 221, 145–158 (2001)

    Article  CAS  Google Scholar 

  76. G. Schemer, J. S. Holcenberg: Enzymes as drugs. In: J. S. Holcenberg. J. Roberts (Wiley, New York 1981) pp. 455–473

    Google Scholar 

  77. M. Chandrasekaran, S. Rajeev Kumar: Marine microbial enzymes in biotechnology. In: Encyclopedia of Life Support Systems, ed. by W.H. Doelle, S. Rokem, M. Berovic (Eolss, Oxford 2003) pp. 1–35

    Google Scholar 

  78. N.A. Kondrat'eva, I.V. Dobrynin, M.F. Merkulov: Biological properties of an asparaginase-glutaminase preparation from Pseudomonas fluorescens in cell cultures, Antibiotiki 23, 122–125 (1978)

    Google Scholar 

  79. N.A. El-Sersy, H. Abd-Elnaby, G.M. Abou-Elela, H.A.H. Ibrahim, N.M.K. El-Toukhy: Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber, Afr. J. Biotechnol. 9, 6355–6364 (2010)

    CAS  Google Scholar 

  80. H.J. Kim, H.J. Lee, W. Gao, C.H. Chung, C.W. Son, J.W. Lee: Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method, Biotechnol. Bioprocess Eng. 16, 542–548 (2011)

    Article  CAS  Google Scholar 

  81. W. Luo, L.L.P. Vrijmoed, E.B.G. Jones: Screening of marine fungi for lignocellulose-degrading enzyme activities, Botanica Marina 48, 379–386 (2005)

    Article  CAS  Google Scholar 

  82. C. Ravindran, T. Naveenan, G.R. Varatharajan: Optimization of alkaline cellulase production by the marinederived fungus Chaetomium sp. using agricultural and industrial wastes as substrates, Botanica Marina 53, 275–282 (2010)

    Article  CAS  Google Scholar 

  83. A. Trincone: Some enzymes in marine environment: Prospective applications found in patent literature, Recent Pat. Biotechnol. 6, 134–148 (2012)

    Article  CAS  Google Scholar 

  84. M.J. Thirumalachar, M.J. Narasimhan: Microbial degradation of petroleum materials 4415661 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barindra Sana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sana, B. (2015). Marine Microbial Enzymes: Current Status and Future Prospects. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_38

Download citation

Publish with us

Policies and ethics