Skip to main content

Electrospun Nanofibers: Solving Global Issues

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Energy and environment will head the list of top global issues facing society for the next 50 years. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibers optimized for energy and environmental applications. The route toward these nano-objects is based primarily on electrospinning: a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. The mechanism responsible for the fiber formation mainly includes the Taylor Cone theory and flight-instability theory, which can be predicted theoretically and controlled experimentally. Moreover, the electrospinning has been applied to natural polymers, synthetic polymers, ceramics, and carbon. Fibers with complex architectures, such as ribbon fiber, porous fiber, core-shell fiber, or hollow fiber, can be produced by special electrospinning methods. It is also possible to produce nanofibrous membranes with designed aggregate structure including alignment, patterning, and two-dimensional nanonets. Finally, the brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The International Energy Agency (2011) World energy outlook 2011. http://www.worldenergyoutlook.org. Accessed 13 May 2011

  2. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205. doi:10.1039/b809074m

    Google Scholar 

  3. De Oliveira MCK, Teixeira A, Vieira LC, de Carvalho RM, de Carvalho ABM, do Couto BC (2012) Flow assurance study for waxy crude oils. Energy Fuel 26(5):2688–2695. doi:10.1021/ef201407j

    Google Scholar 

  4. Moniz EJ (2010) Nanotechnology for the energy challenge. Wiley-VCH, Weinheim

    Google Scholar 

  5. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energy Rev 13(9):2373–2384. doi:10.1016/j.rser.2009.06.003

    Google Scholar 

  6. Painter P, Williams P, Mannebach E (2010) Recovery of bitumen from oil or tar sands using ionic liquids. Energy Fuel 24(2):1094–1098. doi:10.1021/ef9009586

    Google Scholar 

  7. Lee M, Bae J, Lee J, Lee S, Hong S, Wang ZL (2011) Self-powered environmental sensor system driven by nanogenerators. Energy Environ Sci 4(9):3359. doi:10.1039/c1ee01558c

    Google Scholar 

  8. Koopmans R, Duyvendak JW (1995) Political construction of the nuclear energy issue and its impact on the mobilization of anti-nuclear movements in Western Europe. Soc Probl 42(2):235–251

    Google Scholar 

  9. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904. doi:10.1016/j.jpowsour.2011.01.090

    Google Scholar 

  10. Pietrosemoli L, Rodríguez Monroy C (2013) The impact of sustainable construction and knowledge management on sustainability goals. A review of the Venezuelan renewable energy sector. Renew Sust Energy Rev 27:683–691. doi:10.1016/j.rser.2013.07.056

    Google Scholar 

  11. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 120(41):8042–8044. doi:10.1002/anie.200801594

    Google Scholar 

  12. Wiesner MR, Bottero JY (2007) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw Hill Professional, New York

    Google Scholar 

  13. Wheeler D, Elkington J (2001) The end of the corporate environmental report? Or the advent of cybernetic sustainability reporting and communication. Bus Strat Environ 10(1):1–14. doi:10.1002/1099-0836(200101/02)10:1

    Google Scholar 

  14. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846. doi:10.1126/science.1116448

    Google Scholar 

  15. Herzog F (2005) Agri-environment schemes as landscape experiments. Agric Ecosyst Environ 108(3):175–177. doi:10.1016/j.agee.2005.02.001

    Google Scholar 

  16. Gleick P, Cooley H, Cohen MJ, Morikawa M, Morrison J, Palaniappan M (2006) The world’s water 2008–2009: the biennial report on freshwater resources. Island Press, Washington, DC

    Google Scholar 

  17. Gv L, Duffy SJ (2005) Environmental chemistry: a global perspective, vol 2. Oxford University Press, London

    Google Scholar 

  18. McIntyre BD (2009) IAASTD International Assessment of Agricultural Knowledge, Science and Technology for Development: Global report. Island Press, Washington, DC

    Google Scholar 

  19. Vörösmarty CJ, McIntyre P, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. doi:10.1038/nature09440

    Google Scholar 

  20. Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56(6):709–742. doi:10.1016/S0140-6736(00)02653-2

    Google Scholar 

  21. Nel A (2005) Air pollution-related illness: effects of particles. Science 308(5723):804–806. doi:10.1126/science.1108752

    Google Scholar 

  22. Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys Res Lett 33(17):L17811. doi:10.1029/2006GL026899

    Google Scholar 

  23. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, Pope CA III, Thurston G, Calle EE (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality, vol 140. Health Effects Institute, Boston

    Google Scholar 

  24. Marshall JD, Brauer M, Frank LD (2009) Healthy neighborhoods: walkability and air pollution. Environ Health Perspect 117(11):1752. doi:10.1289/ehp.0900595

    Google Scholar 

  25. Anderson HR (2009) Air pollution and mortality: a history. Atmos Environ 43(1):142–152. doi:10.1016/j.atmosenv.2008.09.026

    Google Scholar 

  26. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50. doi:10.1016/s1369-7021(06)71389-x

    Google Scholar 

  27. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. doi:10.1016/j.biotechadv.2010.01.004

    Google Scholar 

  28. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27. doi:10.1016/s1369-7021(10)70200-5

    Google Scholar 

  29. Ding B, Yu J (2011) Electrospinning and nanofibers. China Textile & Apparel Press, Beijing

    Google Scholar 

  30. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703. doi:10.1002/anie.200604646

    Google Scholar 

  31. Wang ZM (2008) One-dimensional nanostructures, vol 3. Springer, Heidelberg

    Google Scholar 

  32. Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  33. Tucker N, Stanger JJ, Staiger MP, Razzaq H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabr Spec Issue-Fibers 7:63–73

    Google Scholar 

  34. De Vrieze S, De Clerck K (2009) 80 years of electrospinning. In: International conference on latest advances in high-tech textiles and textile-based materials, Ghent University. Department of Textiles, pp 60–63

    Google Scholar 

  35. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Google Scholar 

  36. Subbiah T, Bhat G, Tock R, Parameswaran S, Ramkumar S (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569. doi:10.1002/app.21481

    Google Scholar 

  37. Teo W, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89. doi:10.1088/0957-4484/17/14/R01

    Google Scholar 

  38. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. doi:10.1016/j.biomaterials.2008.01.011

    Google Scholar 

  39. Iimura K, Oi T, Suzuki M, Hirota M (2010) Preparation of silica fibers and non-woven cloth by electrospinning. Adv Powder Technol 21(1):64–68. doi:10.1016/j.apt.2009.11.006

    Google Scholar 

  40. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41(13):4708. doi:10.1039/c2cs35083a

    Google Scholar 

  41. Jirsak O, Petrik S (2010) Needleless electrospinning-history, present and future. In: Proceedings of the 7th international conference-TEXSCI 2010, Czech Republic, Liberec, 6–8 September

    Google Scholar 

  42. Si Y, Ren T, Li Y, Ding B, Yu J (2012) Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50(14):5176–5185. doi:10.1016/j. carbon .2012.06.059

    Google Scholar 

  43. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Google Scholar 

  44. Yang L, Raza A, Si Y, Mao X, Shang Y, Ding B, Yu J, AlDeyab SS (2012) Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale 4(20):6581–6587. doi:10.1039/c2nr32095a

    Google Scholar 

  45. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a fascinating strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243. doi:10.1016/j.pmatsci.2013.05.001

    Google Scholar 

  46. Li Z, Wang C (2013) Introduction of electrospinning. Springer, Heidelberg

    Google Scholar 

  47. Reneker D, Kataphinan W, Theron A, Zussman E, Yarin A (2002) Nanofiber garlands of polycaprolactone by electrospinning. Polymer 43(25):6785–6794. doi:10.1016/s0032-3861(02)00595-5

    Google Scholar 

  48. Higuera F (2003) Flow rate and electric current emitted by a Taylor Cone. J Fluid Mech 484:303–327. doi:10.1017/S0022112003004385

    Google Scholar 

  49. Xie J, Wang CH (2007) Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor Cone-jet mode. Biotechnol Bioeng 97(5):1278–1290. doi:10.1002/bit.21334

    Google Scholar 

  50. Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377. doi:10.1017/s0022112004000679

    Google Scholar 

  51. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor Cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836. doi:10.1063/1.1408260

    Google Scholar 

  52. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87(9):4531. doi:10.1063/1.373532

    Google Scholar 

  53. Yarin A, Kataphinan W, Reneker D (2005) Branching in electrospinning of nanofibers. J Appl Phys 98(6):064501–064512. doi:10.1063/1.2060928

    Google Scholar 

  54. Thompson C, Chase G, Yarin A, Reneker D (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922. doi:10.1016/j. polymer .2007.09.017

    Google Scholar 

  55. Han T, Yarin AL, Reneker DH (2008) Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49(6):1651–1658. doi:10.1016/j.polymer.2008.01.035

    Google Scholar 

  56. Reneker D, Yarin A, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. Adv Appl Mech 41:43–346. doi:10.1016/S0065-2156(07)41002-X

    Google Scholar 

  57. Han T, Reneker DH, Yarin AL (2007) Buckling of jets in electrospinning. Polymer 48(20):6064–6076. doi:10.1016/j.polymer.2007.08.002

    Google Scholar 

  58. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. doi:10.1016/j.polymer.2008.02.002

    Google Scholar 

  59. Lin JY, Ding B, Yu JY, Hsieh Y (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528. doi:10.1021/am900736h

    Google Scholar 

  60. Demir MM, Yilgor I, Eea Y, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43(11):3303–3309. doi:10.1016/S0032-3861(02)00136-2

    Google Scholar 

  61. Deitzel J, Kleinmeyer J, Dea H, Beck Tan N (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. doi:10.1016/S0032-3861(00)00250-0

    Google Scholar 

  62. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412. doi:10.1016/S0032-3861(02)00275-6

    Google Scholar 

  63. Lee KH, Kim HY, La YM, Lee DR, Sung NH (2002) Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats. J Polym Sci Part B: Polym Phys 40(19):2259–2268. doi:10.1002/polb.10293

    Google Scholar 

  64. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Effects of solution concentration, emitting electrode polarity, solvent type, and salt addition on electrospun polyamide-6 fibers: a preliminary report. Macromol Symp 216:293–300, Wiley Online Library

    Google Scholar 

  65. Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432. doi:10.1016/j.biomaterials.2005.01.066

    Google Scholar 

  66. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79. doi:10.1016/0021-9797(71)90241-4

    Google Scholar 

  67. Fong H, Chun I, Reneker D (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi:10.1016/S0032-3861(99)00068-3

    Google Scholar 

  68. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly (vinyl alcohol) mats. Eur Polym J 41(3):423–432. doi:10.1016/j.eurpolymj.2004.10.027

    Google Scholar 

  69. Wang X, Ding B, Yu J, Yang J (2011) Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. Colloids Surf B Biointerfaces 86(2):345–352. doi:10.1016/j.colsurfb.2011.04.018

    Google Scholar 

  70. Kim B, Park H, Lee SH, Sigmund WM (2005) Poly (acrylic acid) nanofibers by electrospinning. Mater Lett 59(7):829–832. doi:10.1081/E-ENN-120013552

    Google Scholar 

  71. Barakat NA, Kanjwal MA, Sheikh FA, Kim HY (2009) Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: novel strategy in the electrospinning process. Polymer 50(18):4389–4396. doi:10.1016/j.polymer.2009.07.005

    Google Scholar 

  72. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231. doi:10.1016/S0168-3659(03)00372-9

    Google Scholar 

  73. Lee K, Kim H, Bang H, Jung Y, Lee S (2003) The change of bead morphology formed on electrospun polystyrene fibers. Polymer 44(14):4029–4034. doi:10.1016/S0032-3861(03)00345-8

    Google Scholar 

  74. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fiber Polym 3(2):73–79. doi:10.1002/polb.10191

    Google Scholar 

  75. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41(3):409–421. doi:10.1016/j.eurpolymj.2004.10.010

    Google Scholar 

  76. Jeun JP, Lim YM, Nho YC (2005) Study on morphology of electrospun poly (caprolactone) nanofiber. J Ind Eng Chem 11(4):573–578

    Google Scholar 

  77. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25(7):1289–1297. doi:10.1016/j.biomaterials.2003.08.045

    Google Scholar 

  78. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi:10.1016/S0032-3861(98)00866-0

    Google Scholar 

  79. Hartman R, Brunner D, Camelot D, Marijnissen J, Scarlett B (2000) Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci 31(1):65–95. doi:10.1016/S0021-8502(99)00034-8

    Google Scholar 

  80. Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710. doi:10.1002/pi.1538

    Google Scholar 

  81. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J (2012) Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 4(17):5316–5320. doi:10.1039/c2nr31515g

    Google Scholar 

  82. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. doi:10.1021/ma0351975

    Google Scholar 

  83. Li J, He A, Zheng J, Han CC (2006) Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 7(7):2243–2247. doi:10.1021/bm0603342

    Google Scholar 

  84. Nie H, He A, Wu W, Zheng J, Xu S, Li J, Han CC (2009) Effect of poly (ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate. Polymer 50(20):4926–4934. doi:10.1016/j.polymer.2009.07.043

    Google Scholar 

  85. Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75. doi:10.1016/j.carbon.2013.02.032

    Google Scholar 

  86. Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromolecules 8(2):594–601. doi:10.1021/bm060804s

    Google Scholar 

  87. Park KE, Kang HK, Lee SJ, Min B-M, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7(2):635–643. doi:10.1021/bm0509265

    Google Scholar 

  88. Ji Y, Ghosh K, Shu X, Li B, Sokolov J, Prestwich G, Clark R, Rafailovich M (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20):3782–3792. doi:10.1016/j.biomaterials.2006.02.037

    Google Scholar 

  89. Hang Y, Zhang Y, Jin Y, Shao H, Hu X (2012) Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int J Biol Macromol 51(5):980–986. doi:10.1016/j.ijbiomac.2012.08.010

    Google Scholar 

  90. Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216. doi:10.1021/nl025866c

    Google Scholar 

  91. Woerdeman DL, Ye P, Shenoy S, Parnas RS, Wnek GE, Trofimova O (2005) Electrospun fibers from wheat protein: investigation of the interplay between molecular structure and the fluid dynamics of the electrospinning process. Biomacromolecules 6(2):707–712. doi:10.1021/bm0494545

    Google Scholar 

  92. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15):5361–5368. doi:10.1016/j.polymer.2004.04.005

    Google Scholar 

  93. Huang L, McMillan RA, Apkarian RP, Pourdeyhimi B, Conticello VP, Chaikof EL (2000) Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33(8):2989–2997. doi:10.1021/ma991858f

    Google Scholar 

  94. Yao C, Li X, Song T (2007) Electrospinning and crosslinking of zein nanofiber mats. J Appl Polym Sci 103(1):380–385. doi:10.1002/app.24619

    Google Scholar 

  95. Ritcharoen W, Thaiying Y, Saejeng Y, Jangchud I, Rangkupan R, Meechaisue C, Supaphol P (2008) Electrospun dextran fibrous membranes. Cellulose 15(3):435–444. doi:10.1007/s10570-008-9199-3

    Google Scholar 

  96. Shin MK, Kim SH, Si J, Kim SI, Kim SJ, Kim BJ, So I (2008) The effect of DNA on mechanical properties of nanofiber hydrogels. Appl Phys Lett 93(17):171903. doi:10.1063/1.3009204

    Google Scholar 

  97. Kim CW, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci Part B: Polym Phys 43(13):1673–1683. doi:10.1002/polb.20475

    Google Scholar 

  98. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418. doi:10.1002/polb.20475

    Google Scholar 

  99. Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B: Polym Phys 40(18):2119–2129. doi:10.1002/polb.10261

    Google Scholar 

  100. Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW (2004) Structure and morphology of electrospun silk nanofibers. Polymer 45(11):3973–3977. doi:10.1016/j.polymer.2003.10.102

    Google Scholar 

  101. Um IC, Fang D, Hsiao BS, Okamoto A, Chu B (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5(4):1428–1436. doi:10.1021/bm034539b

    Google Scholar 

  102. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly (vinyl alcohol) fibers via electrospinning. Fibers Polym 3(2):73–79. doi:10.1002/polb.10191

    Google Scholar 

  103. Kim B, Park H, Lee SH, Sigmund WM (2005) Poly (acrylic acid) nanofibers by electrospinning. Mater Lett 59(7):829–832. doi:10.1016/j.matlet.2004.11.032

    Google Scholar 

  104. Li X, Lin L, Zhu Y, Liu W, Yu T, Ge M (2013) Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly (vinyl pyrrolidone) fiber mats via electrospinning. Polym Compos 34(2):282–287. doi:10.1002/pc.22402

    Google Scholar 

  105. Lu P, Hsieh YL (2009) Organic compatible polyacrylamide hydrogel fibers. Polymer 50(15):3670–3679. doi:10.1016/j.polymer.2009.05.040

    Google Scholar 

  106. Chen C, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48(18):5202–5207. doi:10.1016/j.polymer.2007.06.069

    Google Scholar 

  107. Khanam N, Mikoryak C, Draper RK, Balkus KJ (2007) Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater 3(6):1050–1059. doi:10.1016/j.actbio.2007.06.005

    Google Scholar 

  108. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16(2):208–213. doi:10.1088/0957-4484/16/2/005

    Google Scholar 

  109. Hong JK, Xu G, Piao D, Madihally SV (2012) Analysis of void shape and size in the collector plate and polycaprolactone molecular weight on electrospun scaffold pore size. J Appl Polym Sci 128(3):1583–1591. doi:10.1002/app.38326

    Google Scholar 

  110. Wang L, Liu YS, Mo LF, Liu FJ, Xu L (2011) Electrospun nanoporous poly(butylenes succinate-co-butylene terephthalate) nonwoven mats. Adv Mater Sci Eng 2011:1–3. doi:10.1155/2011/654360

    Google Scholar 

  111. Yu BY, Chen CR, Sun YM, Young TH (2009) The response of rat cerebellar granule neurons (rCGNs) to various polyhydroxyalkanoate (PHA) films. Desalination 245(1–3):639–646. doi:10.1016/j.desal.2009.02.031

    Google Scholar 

  112. He JH, Liu Y, Xu L, Yu JY (2007) Micro sphere with nanoporosity by electrospinning. Chaos Soliton Fract 32(3):1096–1100. doi:10.1016/j.chaos.2006.07.045

    Google Scholar 

  113. Basu S, Gogoi N, Sharma S, Jassal M, Agrawal AK (2013) Role of elasticity in control of diameter of electrospun PAN nanofibers. Fiber Polym 14(6):950–956. doi:10.1007/s12221-013-0950-5

    Google Scholar 

  114. Zhu J, Wei S, Chen X, Karki AB, Rutman D, Young DP, Guo Z (2010) Electrospun polyimide nanocomposite fibers reinforced with core-shell Fe-FeO nanoparticles. J Phys Chem C 114(19):8844–8850. doi:10.1021/jp1020033

    Google Scholar 

  115. Kenawy ER, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, Wnek GE (2003) Electrospinning of poly (ethylene-co-vinyl alcohol) fibers. Biomaterials 24(6):907–913. doi:10.1016/S0142-9612(02)00422-2

    Google Scholar 

  116. Deitzel J, Kleinmeyer J, Hirvonen J, Beck Tan N (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42(19):8163–8170. doi:10.1016/s0032-3861(01)00336-6

    Google Scholar 

  117. Kang YK, Park CH, Kim J, Kang TJ (2007) Application of electrospun polyurethane web to breathable water-proof fabrics. Fiber Polym 8(5):564–570. doi:10.1007/BF02875881

    Google Scholar 

  118. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47(5):1597–1603. doi:10.1016/j.polymer.2006.01.032

    Google Scholar 

  119. Luo H, Huang Y, Wang D (2013) Confined crystallization of POM in the CA-nanotubes fabricated by coaxial electrospinning. Eur Polym J 49(6):1424–1436. doi:10.1016/j.eurpolymj.2013.02.037

    Google Scholar 

  120. Tao R, Zhu X, Zuo YT, Fan LJ, Wang B, Xin JT (2013) Grafting modification of electrospun polystyrene fibrous membranes via an entrapped initiator in an acrylic acid aqueous solution. J Appl Polym Sci 127(5):4102–4109. doi:10.1002/app.36797

    Google Scholar 

  121. Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20(7):158. doi:10.1007/s10965-013-0158-9

    Google Scholar 

  122. Zhu X, Jiang X, Cheng S, Wang K, Mao S, Fan LJ (2009) Preparation of high strength ultrafine polyvinyl chloride fibrous membrane and its adsorption of cationic dye. J Polym Res 17(6):769–777. doi:10.1007/s10965-009-9368-6

    Google Scholar 

  123. Damaraju SM, Wu S, Jaffe M, Arinzeh TL (2013) Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater 8(4):045007. doi:10.1088/1748-6041/8/4/045007

    Google Scholar 

  124. Zhang B, Li C, Chang M (2009) Curled poly(ethylene glycol terephthalate)/poly(ethylene propanediol terephthalate) nanofibers produced by side-by-side electrospinning. Polym J 41(4):252–253. doi:10.1295/polymj.PJ2008270

    Google Scholar 

  125. Guo S, Ke Q, Wang H, Jin X, Li Y (2012) Poly (butylene terephthalate) electrospun/melt‐blown composite mats for white blood cell filtration. J Appl Polym Sci 128(6):3653–3655. doi:10.1002/app.38423

    Google Scholar 

  126. Gao L, Li C (2010) Preparation and photoluminescence properties of electrospun nanofibers of C60/PVK. J Lumin 130(2):236–239. doi:10.1016/j.jlumin.2009.08.015

    Google Scholar 

  127. Tang X, Si Y, Ge J, Ding B, Liu L, Luo W, Zheng G, Yu J (2013) In-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale. doi:10.1039/C3NR03937D

    Google Scholar 

  128. Ke H, Cai Y, Wei Q, Xiao Y, Dong J, Hu Y, Song L, He G, Zhao Y, Fong H (2013) Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and retrieval of thermal energy. Int J Energ Res 37(6):657–664. doi:10.1002/er.2888

    Google Scholar 

  129. Shawon J, Sung C (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci 39(14):4605–4613. doi:10.1023/B:JMSC.0000034155.93428.ea

    Google Scholar 

  130. Walmsley RS, Hlangothi P, Litwinski C, Nyokong T, Torto N, Tshentu ZR (2013) Catalytic oxidation of thioanisole using oxovanadium (IV)-functionalized electrospun polybenzimidazole nanofibers. J Appl Polym Sci 127(6):4719–4725. doi:10.1002/app.38067

    Google Scholar 

  131. Park JY, Lee IH, Bea GN (2008) Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J Ind Eng Chem 14(6):707–713. doi:10.1016/j.jiec.2008.03.006

    Google Scholar 

  132. Zakaria SM, Sharif Zein SH, Othman MR, Jansen JA (2013) Hydroxyapatite nanoparticles: electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics. J Biomed Mater Res A 101A(7):1977–1985. doi:10.1002/jbm.a.34506

    Google Scholar 

  133. Sanders EH, Kloefkorn R, Bowlin GL, Simpson DG, Wnek GE (2003) Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly (ethylene-co-vinyl acetate) fibers. Macromolecules 36(11):3803–3805. doi:10.1021/ma021771l

    Google Scholar 

  134. Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370. doi:10.1002/smll.200900445

    Google Scholar 

  135. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560. doi:10.1002/jbm.a.34293

    Google Scholar 

  136. Dharmaraj N, Kim CH, Kim KW, Kim HY, Suh EK (2006) Spectral studies of SnO2 nanofibres prepared by electrospinning method. Spectrochim Acta A-Mol Biomol Spectrosc 64(1):136–140. doi:10.1016/j.saa.2005.07.007

    Google Scholar 

  137. Melo EF, Alves KGB, Junior SA, Melo CP (2013) Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J Mater Sci 48(10):3652–3658. doi:10.1007/s10853-013-7159-2

    Google Scholar 

  138. Zheng W, Lu X, Wang W, Li Z, Zhang H, Wang Y, Wang Z, Wang C (2009) A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens Actuat B-Chem 142(1):61–65. doi:10.1016/j.snb.2009.07.031

    Google Scholar 

  139. Zhang P, Jiao X, Chen D (2013) Fabrication of electrospun Al2O3 fibers with CaO–SiO2 additive. Mater Lett 91:23–26. doi:10.1016/j.matlet.2012.09.077

    Google Scholar 

  140. Lee SS, Bai H, Liu Z, Sun DD (2013) Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47(12):4059–4073. doi:10.1016/j.watres.2012.12.044

    Google Scholar 

  141. Guan H, Shao C, Wen S, Chen B, Gong J, Yang X (2003) Preparation and characterization of NiO nanofibres via an electrospinning technique. Inorg Chem Commun 6(10):1302–1303. doi:10.1016/j.inoche.2003.08.003

    Google Scholar 

  142. Viswanathamurthi P, Bhattarai N, Kim HY, Khil MS, Lee DR, Suh EK (2004) GeO2 fibers: preparation, morphology and photoluminescence property. J Chem Phys 121(1):441. doi:10.1063/1.1755666

    Google Scholar 

  143. Viswanathamurthi P (2003) Vanadium pentoxide nanofibers by electrospinning. Scr Mater 49(6):577–581. doi:10.1016/s1359-6462(03)00333-6

    Google Scholar 

  144. Li Y, Gong J, He G, Deng Y (2011) Synthesis of polyaniline nanotubes using Mn2O3 nanofibers as oxidant and their ammonia sensing properties. Synth Met 161(1–2):56–61. doi:10.1016/j.synthmet.2010.10.034

    Google Scholar 

  145. Jing N, Wang M, Kameoka J (2005) Fabrication of ultrathin ZrO nanofibers by electrospinning. J Photopolym Sci Technol 18(4):503–506. doi:10.1021/nl034039o

    Google Scholar 

  146. Liu HA, Balkus KJ (2009) Electrospinning of beta silicon carbide nanofibers. Mater Lett 63(27):2361–2364. doi:10.1016/j.matlet.2009.08.009

    Google Scholar 

  147. Sangmanee M, Maensiri S (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97(1):167–177. doi:10.1007/s00339-009-5256-5

    Google Scholar 

  148. Guo M, Ding B, Li X, Wang X, Yu J, Wang M (2009) Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C 114(2):916–921. doi:10.1021/jp909672r

    Google Scholar 

  149. Liu C-K, Lai K, Liu W, Yao M, Sun R-J (2009) Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym Int 58(12):1341–1349. doi:10.1002/pi.2669

    Google Scholar 

  150. Si Y, Ren T, Ding B, Yu J, Sun G (2012) Synthesis of mesoporous magnetic Fe3O4@ carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. J Mater Chem 22(11):4619–4622. doi:10.1039/C2JM00036A

    Google Scholar 

  151. Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J (2012) Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem 22(31):15919–15927. doi:10.1039/C2JM33214K

    Google Scholar 

  152. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B: Polym Phys 39(21):2598–2606. doi:10.1002/polb.10015

    Google Scholar 

  153. Lin T, Wang H, Wang X (2005) Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater 17(22):2699–2703. doi:10.1002/adma.200500901

    Google Scholar 

  154. Jin Y, Yang D, Kang D, Jiang X (2009) Fabrication of necklace-like structures via electrospinning. Langmuir 26(2):1186–1190. doi:10.1021/la902313t

    Google Scholar 

  155. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932. doi:10.1002/adma.200305136

    Google Scholar 

  156. Zhao Y, Cao XY, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129(4):764–765. doi:10.1021/Ja068165g

    Google Scholar 

  157. Wang X, Si Y, Wang X, Yang J, Ding B, Chen L, Hu Z, Yu J (2013) Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers. Nanoscale 5(3):886–889. doi:10.1039/C2NR33696K

    Google Scholar 

  158. Zhang D, Chang J (2007) Patterning of electrospun fibers using electroconductive templates. Adv Mater 19(21):3664–3667. doi:10.1002/adma.200700896

    Google Scholar 

  159. Ding B, Li CR, Miyauchi Y, Kuwaki O, Shiratori S (2006) Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology 17(15):3685–3691. doi:10.1088/0957-4484/17/15/011

    Google Scholar 

  160. Wang N, Wang X, Ding B, Yu J, Sun G (2012) Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J Mater Chem 22(4):1445–1452. doi:10.1039/C1JM14299B

    Google Scholar 

  161. Hu J, Wang X, Ding B, Lin J, Yu J, Sun G (2011) One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. Macromol Rapid Commun 32(21):1729–1734. doi:10.1002/marc.201100343

    Google Scholar 

  162. Yang SB, Wang XF, Ding B, Yu JY, Qian JF, Sun G (2011) Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting. Nanoscale 3(2):564–568. doi:10.1039/C0NR00730G

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program, 2011CB606103 and 2012CB525005), the National Natural Science Foundation of China (No. 51173022, U1232116, 51273038, and 51322304), and the Program for New Century Talents of the University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Si, Y., Tang, X., Yu, J., Ding, B. (2014). Electrospun Nanofibers: Solving Global Issues. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_1

Download citation

Publish with us

Policies and ethics