Skip to main content

Application of Electrospun Nanofibers in Organic Photovoltaics

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

  • 3908 Accesses

Abstract

This chapter highlights the introduction of organic thin-film solar cells and organic–inorganic hybrid solar cells and the development of electrospun nanofibers for those applications. Organic solar cells need large interfacial surface area for efficient charge separation of excitons, which are normally achieved by thermal annealing. However, this annealing is relatively not compatible with the polymers with low glass transition temperature, not compatible with flexible substrates, and also not compatible with large area devices. An alternative process that yields efficient interface of electron donor and acceptor with continuous phase of each material is necessary. Electrospinning is a good method to fabricate nanofibers of conducting polymers which can be used as electron donor materials of organic solar cells. To improve the efficiencies of organic solar cells, the combination of organic and inorganic semiconductor as organic–inorganic hybrid photovoltaic cells has been extensively investigated to overcome the low mobility of carriers by using nanostructured inorganic materials as electron acceptors and/or electron transporting layers. The use of inorganic semiconductors in the form of electrospun nanofibers as electron transporting layers is a promising alternative way. Nanofiber-based transparent electrodes can also be fabricated by electrospinning with flexible property. These electrodes are very promising to be utilized as flexible substrates for both organic thin-film solar cells and organic–inorganic hybrid solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivers PN (ed) (2007) Leading edge research in solar energy. Nova Science Publishers, New York. ISBN 1600213367

    Google Scholar 

  2. Halls JJM, Friend RH (2001) Organic photovoltaic devices. In: Archer MD, Hill RD (eds) Clean electricity from photovoltaics. Imperial College Press, London, pp 377–445. ISBN 1860941613

    Chapter  Google Scholar 

  3. Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mat Sci 6:87–95. doi:10.1016/S1359-0286(02)00006-2

    Article  Google Scholar 

  4. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945. doi:10.1557/JMR.2004.0252

    Article  Google Scholar 

  5. McGehee DG, Topinka MA (2006) Solar cells: pictures from the blended zone. Nat Mater 5:675–676. doi:10.1038/nmat1723

    Article  Google Scholar 

  6. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cell. Adv Funct Mater 11:15–26. doi:10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

    Article  Google Scholar 

  7. Chuangchote S, Sagawa T, Yoshikawa S (2011) Electrospun TiO2 nanowires for hybrid photovoltaic cells. J Mater Res 26:2316–2321. doi:10.1557/jmr.2011.167

    Article  Google Scholar 

  8. White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89:143517. doi:10.1063/1.2359579

    Article  Google Scholar 

  9. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91:152111. doi:10.1063/1.2799257

    Article  Google Scholar 

  10. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427. doi:10.1126/science.1069156

    Article  Google Scholar 

  11. Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92:093303. doi:10.1063/1.2885724

    Article  Google Scholar 

  12. Cheng Y-J, Hsieh C-H, He Y, Hsu C-S, Li Y (2010) Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 132:17381–17383. doi:10.1021/ja108259n

    Article  Google Scholar 

  13. Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J, Cao Y (2010) Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C 114:6849–6853. doi:10.1021/jp1003984

    Article  Google Scholar 

  14. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161. doi:10.1038/nphoton.2012.11

    Article  Google Scholar 

  15. Wu C, Murata H (2012) Thinking small for solar. MRS Bull 37:194–195. doi:10.1557/mrs.2012.62

    Article  Google Scholar 

  16. Kotlarski JD, Blom PWM (2011) Ultimate performance of polymer: fullerene bulk heterojunction tandem solar cells. Appl Phys Lett 98:053301. doi:10.1063/1.3549693

    Article  Google Scholar 

  17. Gosh AK, Feng T (1978) Merocyanine organic solar cells. J Appl Phys 49:5982–5989. doi:10.1063/1.324566

    Article  Google Scholar 

  18. Tang CW (1986) Two‐layer organic photovoltaic cell. Appl Phys Lett 48:183. doi:10.1063/1.96937

    Article  Google Scholar 

  19. Hiramoto M, Suezaki M, Yokoyama M (1990) Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem Lett 19:327–330. doi:10.1246/cl.1990.327

    Article  Google Scholar 

  20. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474. doi:10.1126/science.258.5087.1474

    Article  Google Scholar 

  21. Morita S, Zakhidov AA, Yoshino K (1992) Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescence. Solid State Commun 82:249–252. doi:10.1016/0038-1098(92)90636-N

    Article  Google Scholar 

  22. Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB (1994) The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys Condens Matter 6: 1379–1394. doi:10.1088/0953-8984/6/7/009

    Article  Google Scholar 

  23. Yu G, Zhang C, Heeger AJ (1994) Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542. doi:10.1063/1.111885

    Article  Google Scholar 

  24. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl Phys Lett 62:585–587. doi:10.1063/1.108863

    Article  Google Scholar 

  25. Roman LS, Mammo W, Petterson LAA, Andersson MR, Inganäs O (1998) High quantum efficiency polythiophene. Adv Mater 10:774–777. doi:10.1002/(SICI)1521-4095(199807)10:10<774::AID-ADMA774>3.0.CO;2-J

    Article  Google Scholar 

  26. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791. doi:10.1126/science.270.5243.1789

    Article  Google Scholar 

  27. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen CJ (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78:841. doi:10.1063/1.1345834

    Article  Google Scholar 

  28. Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Maggini M (2002) The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells. Adv Mater 14:1735–1738. doi:10.1002/1521-4095(20021203)

    Article  Google Scholar 

  29. Pandinger F, Rittberger RS, Saricifti NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88. doi:10.1002/adfm.200390011

    Article  Google Scholar 

  30. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5:197–203. doi:10.1038/nmat1574

    Article  Google Scholar 

  31. Tajima K, Suzuki Y, Hashimoto K (2008) Polymer photovoltaic devices using fully regioregular poly[(2-methoxy-5-(3’,7’-dimethyloctyloxy))-1,4-phenylenevinylene]. J Phys Chem C 112:8507–8510. doi:10.1021/jp802688s

    Article  Google Scholar 

  32. Hiorns RC, de Bettignies R, Leroy J, Bailly S, Firon M, Sentein C, Khoukh A, Preud’homme H, Dagron-Lartigau C (2006) High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene). Adv Funct Mater 16:2263–2273. doi:10.1002/adfm.200600005

    Article  Google Scholar 

  33. Weller H (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed Engl 32:41–53. doi:10.1002/anie.199300411

    Article  Google Scholar 

  34. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637. doi:10.1103/PhysRevB.54.17628

    Article  Google Scholar 

  35. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Photocatalytic activity for hydrogen evolution of electrospun TiO2 Nanofibers. ACS Appl Mater Interfaces 1:1140–1143. doi:10.1021/am9001474

    Article  Google Scholar 

  36. Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon AB (2001) A solid state solar cell using sol-gel processed material and a polymer. Chem Phys Lett 347:325–330. doi:10.1016/S0009-2614(01)01003-X

    Article  Google Scholar 

  37. Arango AC, Johnson LR, Bliznyuk VN, Schlesinger Z, Carter SA, Hörhold H-H (2000) Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv Mater 12:1689. doi:10.1002/1521-4095(200011)12:22<1689::AID-ADMA1689>3.0.CO;2-9

    Article  Google Scholar 

  38. Ravirajan P, Bradley DDC, Nelson J, Haque SA, Durrant JR, Smit HJP, Kroon JM (2005) Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Appl Phys Lett 86:143101. doi:10.1063/1.1890468

    Article  Google Scholar 

  39. Nelson J, Kirkpatrick J, Ravirajan P (2004) Factors limiting the efficiency of molecular photovoltaic devices. Phys Rev B 69:035337. doi:10.1103/PhysRevB.69.035337

    Article  Google Scholar 

  40. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117. doi:10.1063/1.2821113

    Article  Google Scholar 

  41. Chuangchote S, Ruankham P, Sagawa T, Yoshikawa S (2010) Improvement of power conversion efficiency in organic photovoltaics by slow cooling in annealing treatment. Appl Phys Express 3:122302. doi:10.1143/APEX.3.122302

    Article  Google Scholar 

  42. Wutticharoenmongkol P, Supaphol P, Srikhirin T, Kerdcharoen T, Osotchan T (2005) Electrospinning of polystyrene/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene) blends. J Polym Sci B 43:1881–1891. doi:10.1002/polb.20478

    Article  Google Scholar 

  43. Chuangchote S, Srikhirin T, Supaphol P (2007) Color change of electrospun polystyrene/MEH-PPV fibers from orange to yellow through partial decomposition of MEH side groups. Macromol Rapid Commun 28:651–659. doi:10.1002/marc.200600769

    Article  Google Scholar 

  44. Kahol PK, Pinto NJ (2004) An EPR investigation of electrospun polyaniline-polyethylene oxide blends. Synth Met 140:269–272. doi:10.1016/S0379-6779(03)00370-9

    Google Scholar 

  45. MacDiarmid AG, Jones WE Jr, Norris ID, Gao J, Johnson AT Jr, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30. doi:10.1016/S0379-6779(00)00597-X

    Article  Google Scholar 

  46. Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114:109–114. doi:10.1016/S0379-6779(00)00217-4

    Article  Google Scholar 

  47. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932. doi:10.1002/adma.200305136

    Article  Google Scholar 

  48. Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16:1562–1566. doi:10.1002/adma.200306644

    Article  Google Scholar 

  49. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47:1597–1603. doi:10.1016/j.polymer.2006.01.032

    Article  Google Scholar 

  50. Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y (2006) Preparation and characterization of polypyrrole/TiO2 coaxial nanocables. Macromol Rapid Commun 27: 430–434. doi:10.1002/marc.200500810

    Article  Google Scholar 

  51. Zhao Q, Huang Z, Wang C, Zhao Q, Sun H, Wang D (2007) Preparation of PVP/MEH-PPV composite polymer fibers by electrospinning and study of their photoelectronic character. Mater Lett 61:2159–2163. doi:10.1016/j.matlet.2006.08.046

    Article  Google Scholar 

  52. Chuangchote S, Sagawa T, Yoshikawa S (2008) Fabrication and optical properties of electrospun organic semiconductor nanofibers from blended polymer solution. Mater Res Soc Symp Proc 1091:1091-AA07-85, 89–94. doi:10.1557/PROC-1091-AA07-85

  53. Chuangchote S, Sagawa T, Yoshikawa S (2008) Fabrication and optical properties of electrospun conductive polymer nanofibers from blended polymer solution. Jpn J Appl Phys 47:787–793. doi:10.1143/JJAP.47.787

    Article  Google Scholar 

  54. Chuangchote S, Sagawa T, Yoshikawa S (2008) Ultrafine electrospun conducting polymer blend fibers and their photoluminescence properties. Macromol Symp 264:80–89. doi:10.1002/masy.200850413

    Article  Google Scholar 

  55. Babel A, Li D, Xia Y, Jenekhe SA (2005) Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38:4705–4711. doi:10.1021/ma047529r

    Article  Google Scholar 

  56. Li D, Babel A, Jenekhe SA, Xia Y (2004) Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater 16:2062–2066. doi:10.1002/adma.200400606

    Article  Google Scholar 

  57. Xin Y, Huang ZH, Yan EY, Zhang W, Zhao Q (2006) Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning. Appl Phys Lett 89:053101. doi:10.1063/1.2236382

    Article  Google Scholar 

  58. Zhang W, Huang Z, Yan E, Wang C, Xin Y, Zhao Q, Tong Y (2007) Preparation of poly(phenylene vinylene) nanofibers by electrospinning. Mater Sci Eng A 443:292–295. doi:10.1016/j.msea.2006.05.147

    Article  Google Scholar 

  59. Chuangchote S, Sagawa T, Yoshikawa S (2008) Fiber-based bulk-heterojunction organic photovoltaic cells. Mater Res Soc Symp Proc 1149:1149-QQ11-04, 25–29

    Google Scholar 

  60. Liu HA, Zepeda D, Ferraris JP, Balkus KJ Jr (2009) Electrospinning of poly(alkoxyphenylenevinylene) and methanofullerene nanofiber blends. ACS Appl Mater Interfaces 1:1958–1965. doi:10.1021/am900338w

    Article  Google Scholar 

  61. Sundarrajan S, Murugan R, Nair AS, Ramakrishna S (2010) Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater Lett 64:2369–2372. doi:10.1016/j.matlet.2010.07.054

    Article  Google Scholar 

  62. Cho H, Min S-Y, Lee T-W (2013) Electrospun organic nanofiber electronics and photonics. Macromol Mater Eng 298:475–486. doi:10.1002/mame.201200364

    Article  Google Scholar 

  63. Bedford NM, Dickerson MB, Drummy LF, Koerner H, Singh KM, Vasudev MC, Durstock MF, Naik RR, Steckl AJ (2012) Nanofiber-based bulk-heterojunction organic solar cells using coaxial electrospinning. Adv Energy Mater 2:1136–1144. doi:10.1002/aenm.201100674

    Article  Google Scholar 

  64. Chuangchote S, Fujita M, Sagawa T, Yoshikawa S (2010) Fabrication and characterizations of poly(3-hexylthiophene) nanofibers. Mater Res Soc Symp Proc 1270:1270-HH14-07, 55–60. doi:10.1557/PROC-1270-HH14-07

  65. Chuangchote S, Fujita M, Sagawa T, Yoshikawa S (2010) Electrospun polythiophene nanofibers and their applications for organic solar cells. Mater Res Soc Symp Proc 1303:1303-Y03-28, 63–67. doi:10.1557/opl.2011.402

  66. Chuangchote S, Fujita M, Sagawa T, Sakaguchi H, Yoshikawa S (2010) Control of self organization in conjugated polymer fibers. ACS Appl Mater Interfaces 2:2995–2997. doi:10.1021/am1008198

    Article  Google Scholar 

  67. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. doi:10.1039/B809074M

    Article  Google Scholar 

  68. Ravirajan P, Peiró AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J (2006) Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J Phys Chem B 110:7635–7639. doi:10.1021/jp0571372

    Article  Google Scholar 

  69. Wang GT, Talin AA, Werder DJ, Creighton JR, Lai E, Anderson RJ, Arslan I (2006) Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition. Nanotechnology 17:5773–5780. doi:10.1088/0957-4484/17/23/011

    Article  Google Scholar 

  70. Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS (2005) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496:26–29. doi:10.1016/j.tsf.2005.08.179

    Article  Google Scholar 

  71. Chuangchote S, Sagawa T, Yoshikawa S (2008) Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl Phys Lett 93:033310. doi:10.1063/1.2958347

    Article  Google Scholar 

  72. Shim H-S, Na S-I, Nam SH, Ahn H-J, Kim HJ, Kim D-Y, Kim WB (2008) Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer. Appl Phys Lett 92:183107. doi:10.1063/1.2919800

    Article  Google Scholar 

  73. Zhu R, Jiang C-Y, Liu X-Z, Liu B, Kumar A, Ramakrishna S (2008) Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl Phys Lett 93:013102. doi:10.1063/1.2907317

    Article  Google Scholar 

  74. Tanveer M, Habib A, Khan MB (2013) Dependence of organic/inorganic photovoltaic device performance on precursor’s concentration used for electrospun TiO2 nanofibers. Nano 8:1350033. doi:10.1142/S1793292013500331

    Article  Google Scholar 

  75. Wu S, Tai Q, Yan F (2010) Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C 114:6197–6200. doi:10.1021/jp910921a

    Article  Google Scholar 

  76. Chuangchote S, Sagawa T, Yoshikawa S (2011) Electrospun TiO2 nanofibers for organic–inorganic hybrid photovoltaic cells. Mater Res Soc Symp Proc 1359:1359-NN07-09. doi:10.1557/opl.2011.882

  77. Tanveer M, Habib A, Khan MB (2012) Improved efficiency of organic/inorganic photovoltaic devices by electrospun ZnO nanofibers. Mater Sci Eng B 177:1144–1148. doi:10.1016/j.mseb.2012.05.025

    Article  Google Scholar 

  78. Kolodinski S, Werner JH, Wittchen T, Queisser HJ (1993) Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl Phys Lett 63:2405–2407. doi:10.1063/1.110489

    Article  Google Scholar 

  79. Schaller RD, Sykora M, Pietryga JM, Klimov VI (2006) Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett 6: 424–429. doi:10.1021/nl052276g

    Article  Google Scholar 

  80. Greenham NC, Peng X, Alivisatos AP (1997) Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth Met 84:545–546. doi:10.1016/S0379-6779(97)80852-1

    Article  Google Scholar 

  81. Cortina H, Martínez-Alonso C, Castillo-Ortega M, Hu H (2012) Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater Sci Eng B 177: 1491–1496. doi:10.1016/j.mseb.2012.02.014

    Article  Google Scholar 

  82. Wu S, Li J, Lo S-C, Tai Q, Yan F (2012) Enhanced performance of hybrid solar cells based on ordered electrospun ZnO nanofibers modified with CdS on the surface. Org Electron 13: 1569–1575. doi:10.1016/j.orgel.2012.04.018

    Article  Google Scholar 

  83. Wu H, Zhang R, Liu X, Lin D, Pan W (2007) Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem Mat 19:3506–3511. doi:10.1021/cm070280i

    Article  Google Scholar 

  84. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248. doi:10.1021/nl102725k

    Article  Google Scholar 

  85. Zhang Q, Chang Z, Zhu M, Mo X, Chen D (2007) Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays. Nanotechnology 18:115611. doi:10.1088/0957-4484/18/11/115611

    Article  Google Scholar 

  86. Chuangchote S, Sagawa T, Yoshikawa S (2011) Indium tin oxide nanofibers and their applications for dye-sensitized solar cells. ECS Trans 41:223–229. doi:10.1149/1.3629970

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank for all cited reports as the sources of this chapter. The author (S.C.) thanks Building Energy Science and Technology Laboratory (BEST) and Advanced Fuel Processing Laboratory (AFPL) at The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, for the allowed time to review and write this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surawut Chuangchote or Takashi Sagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chuangchote, S., Sagawa, T. (2014). Application of Electrospun Nanofibers in Organic Photovoltaics. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_6

Download citation

Publish with us

Policies and ethics