Skip to main content

Neural Field Dynamics and the Evolution of the Cerebral Cortex

  • Chapter
  • First Online:
Neural Fields

Abstract

We describe principles for cortical development which may apply both to the evolution of species, and to the antenatal development of the cortex of individuals. Our account depends upon the occurrence of synchronous oscillation in the neural field during embryonic development, and the assumption that synchrony is linked to cell survival during apoptosis . This leads to selection of arrays of neurons with ultra-small-world characteristics. The “degree of separation” power law is supplied by the combination of neuron sub-populations with differing exponential axonal tree distributions, and consequently, in the visual cortex , connections emerge in anatomically realistic patterns, with an ante-natal arrangement which projects signals from the surrounding cortex onto each macrocolumn, in a form analogous to the projection of a Euclidean plane onto a Möbius strip. Simulations of signal flow explain cortical responses to moving lines as functions of stimulus velocity, length and orientation. With the introduction of direct visual inputs, under the operation of Hebbian learning , development of mature selective response “tuning” to stimuli “features” then takes place, overwriting the earlier ante-natal configuration. Further assuming similar development principles apply to inter-areal interactions in the developing cortex, a general principle for the evolution of increasingly complicated sensory-motor sequences, at both species-evolution and individual time-scales, is implicit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, M.V., Schnabel, A., Field, D.J.: Innate visual learning through spontaneous activity patterns. PLoS Comput. Biol. 10 (2008). doi:1371/journal.pcbi.1000137

    Google Scholar 

  2. Alexander, D.M., Bourke, P.D., Sheridan, P., Konstandatos, O., Wright, J.J.: Intrinsic connections in tree shrew V1 imply a global to local mapping. Vis. Res. 44, 857–876 (2004)

    Google Scholar 

  3. Angelucci, A., Bullier, J.: Reaching beyond the classical receptive field of V1 neurons; horizontal or feedback axons? J. Physiol. (Paris) 97, 141–154 (2003)

    Google Scholar 

  4. Angelucci, A., Levitt, J.B., Lund, J.S.: Anatomical origins of the classic receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain. Res. 136, 373–388 (2002)

    Google Scholar 

  5. Bahrey, H.L.P., Moody, W.J.: Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex. J. Neurophysiol. 89, 1761–1773 (2002)

    Google Scholar 

  6. Baker, T.I., Issa, N.P.: Cortical maps of separable tuning properties predict population responses of complex visual stimuli. J. Neurophysiol. 94, 775–787 (2005)

    Google Scholar 

  7. Barber, M.J., Lichtman, J.W.: Activity-driven synapse elimination leads paradoxically to domination by inactive synapses. J. Neurosci. 19, 9975–9985 (1999)

    Google Scholar 

  8. Basole, A., White, L.E., Fitzpatrick, D.: Mapping of multiple features in the population response of visual cortex. Nature 423, 986–990 (2003)

    Google Scholar 

  9. Basole, A., Kreft-Kerekes, V., White, L.E., Fitzpatrick, D.: Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Prog. Brain Res. 154, 121–134 (2006)

    Google Scholar 

  10. Blakemore, C., Cooper, G. F.: Development of brain depends on the visual environment. Nature 228, 477–478 (1970)

    Google Scholar 

  11. Blakemore, C., Van Sluyters, R.C.: Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248, 663–716 (1975)

    Google Scholar 

  12. Blaschke, A.J., Staley, K., Chun, J.: Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122, 1165–1174 (1996)

    Google Scholar 

  13. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Google Scholar 

  14. Boucsein, C., Nawrot, M., Schnepel, P., Aertsen, A.: Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front. Neurosci. 5, 32 (2011). doi:10.3389/fnins.2011.00032

    Google Scholar 

  15. Braitenberg, V., Schüz, A.: Anatomy of the cortex: statistics and geometry. Springer, Berlin/New York (1991)

    Google Scholar 

  16. Bressler, S.L., Coppola, R., Nakamura R.: Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156 (1993)

    Google Scholar 

  17. Buzás, P., Kovács, K., Ferecskó, A.S., Budd, J.M.L., Eysel, U.T., Kisvárday Z.F.: Model-based analysis of excitatory lateral connections in the visual cortex. J. Comp. Neurol. 499, 861–881 (2006)

    Google Scholar 

  18. Callaway, E.M., Katz, L.C.: Emergence and refinement of clustered horizontal connections in cat striate cortex. J. Neurosci. 10, 1134–1153 (1990)

    Google Scholar 

  19. Carriera-Perpiñán, M.Á., Lister, R.J., Goodhill, G.J.: A computational model for development of multiple maps in primary visual cortex. Cereb. Cortex 15, 1222–1233 (2005)

    Google Scholar 

  20. Chapman, C.L., Bourke, P.D., Wright, J.J.: Spatial eigenmodes and synchronous oscillation: coincidence detection in simulated cerebral cortex. J. Math. Biol. 45, 57–78 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Cohen, R., Havlin, S.: Scale-free networks are ultra-small. Phys. Rev. Lett. 90, 058701 (2003)

    Google Scholar 

  22. Downes, J.H., Hammond, M.W., Xydas, D., Spencer, M., Becerra, V.M., Warwick, K., Whalley, B.J., Nasuto, S.J.: Emergence of a small-world functional network in cultured neurons. PLoS Comput. Biol. 8, e1002522 (2012)

    Google Scholar 

  23. Durack, J.C., Katz, L.C.: Development of horizontal projections in layer 2/3 of ferret visual cortex. Cereb. Cortex 6, 178–183 (1996)

    Google Scholar 

  24. Durbin, R., Mitchison, G.: A dimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990)

    Google Scholar 

  25. Durbin, R., Willshaw, D.J.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326, 689–691 (1987)

    Google Scholar 

  26. Eckhorn, R., Bauer, R., Jordon, W., Brosch, M., Kruse, W., Monk, M., Reitboeck, H.J.: Coherent oscillations: a mechanism of feature linking in the in the visual cortex? Biol. Cybern. 60, 121–130 (1988)

    Google Scholar 

  27. Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput. 2, 293–307 (1990)

    Google Scholar 

  28. Elliot, T.: Stability against fluctuations: scaling, bifurcations, and spontaneous symmetry breaking in stochastic models of synaptic plasticity. Neural Comput. 23, 674–734 (2011)

    MathSciNet  Google Scholar 

  29. Elliott, T., Shadbolt, N.R.: Multiplicative synaptic normalization and a nonlinear Hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Neural Comput. 14, 1311–1322 (2002)

    MATH  Google Scholar 

  30. Enoki, R., Hu, Y-L., Hamilton, D., Fine, A.: Expression of long-term plasticity at individual synapses in hippocampus is graded, bi-directional, and mainly pre-synaptic: optic quantal analysis. Neuron 62, 242–253 (2009)

    Google Scholar 

  31. Erwin, E., Miller, K.D.: Correlation-based development of ocularly-matched orientation maps and ocular dominance maps: determination of required input activity structures. J. Neurosci. 18, 9870–9895 (1998)

    Google Scholar 

  32. Freeman, W.J.: Mass Action in the Nervous System. Academic, New York (1975)

    Google Scholar 

  33. Freeman, W.J.: Predictions on neocortical dynamics derived from studies in paleocortex. In: Induced Rhythms of the Brain. Birkhäuser, Boston (1991)

    Google Scholar 

  34. Freeman, W.J., Quiroga, R.Q.: Imaging Brain Function. Springer, New York/Heidelberg/Dordrecht/London (2013)

    Google Scholar 

  35. Gilbert, C.D., Wiesel, T.N.: Morphology and intracortical projections of functionally characteristic neurons in cat visual cortex. Nature 280, 120–125 (1979)

    Google Scholar 

  36. Gilbert, C.D., Wiesel, T.N.: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989)

    Google Scholar 

  37. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronisation which reflects global stimulus properties. Nature 388, 334–337 (1989)

    Google Scholar 

  38. Grossberg, S., Olson, S.J.: Rules for the cortical map of ocular dominance and orientation columns. Neural Netw. 7, 883–894 (1994)

    MATH  Google Scholar 

  39. Harris, A.E., Ermentrout, G.B., Small, S.L.: A model of ocular column development by competition for trophic factor. Proc. Natl. Acad. Sci. U.S.A. 94, 9944–9949 (1997)

    Google Scholar 

  40. Hashimoto, K., Tsujita, M., Miyazaki, T., Kitamura, K., Yamazaki, M., Shin, H-S., Watanabe, M., Sakimura, K., Kano, M.: Postsynaptic P/Q-type Ca2+ channel in Purkinji cell mediates synaptic competition and elimination in developing cerebellum. PNAS 108, 9987–9992 (2011)

    Google Scholar 

  41. Hassenstaub, A., Shu, Y., Haider, B., Krauschaar, U., Duque, A., McCormick, D.A.: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005)

    Google Scholar 

  42. Hebb, D.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  43. Heck, N., Golbs, A., Riedemann, T., Sun, J-J., Lessmann, V., Luhmann, H.J.: Activity dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cereb. Cortex 18, 1335–1349 (2008)

    Google Scholar 

  44. Higginbotham, H., Yokota, Y., Anton, E.S.: Strategies for analyzing neuronal progenitor development and neuronal migration in the developing cerebral cortex. Cereb. Cortex 21, 1465–1474 (2011)

    Google Scholar 

  45. Hiramoto, M., Cline, H.: Convergence of multisensory inputs in the xenopus tadpole tectum. Dev. Neurobiol. 69, 959–971 (2009)

    Google Scholar 

  46. Hirsch, J.A., Gilbert, C.D.: Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci. 11, 1800–1809 (1991)

    Google Scholar 

  47. Horton, C.H., Adams, D.L.: The cortical column: a structure without a function. Phil. Trans. R. Soc. B. 360, 837–862 (2005)

    Google Scholar 

  48. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Google Scholar 

  49. Issa, P., Rosenberg, A., Husson, T.R.: Models and measurements of functional maps in V1. J. Neurophysiol. 99, 2745–2754 (2008)

    Google Scholar 

  50. James, W.: Psychology (Briefer Course). Holt, New York (1890)

    Google Scholar 

  51. Kathuri, N., Lichtman, J.W.: The role of neuronal identity in synaptic competition. Nature 424, 430 (2003). doi:10.1038/nature01836

    Google Scholar 

  52. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)

    MATH  MathSciNet  Google Scholar 

  53. Li, W., Their, P., Wehrhahn, C.: Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J. Neurophysiol. 83, 941–954 (2000)

    Google Scholar 

  54. Linsker, R.: From basic network principles to neural architecture: emergence of spatial opponent cells. Proc. Natl. Acad. Sci. U.S.A. 83, 7508–7512 (1986)

    Google Scholar 

  55. Linsker, R.: From basic network principles to neural architecture: emergence of orientation selective cells. Proc. Natl. Acad. Sci. U.S.A. 83, 8390–8394 (1986)

    Google Scholar 

  56. Linsker, R.: From basic network principles to neural architecture: emergence of orientation columns. Proc. Natl. Acad. Sci. U.S.A. 83, 8779–8783 (1986)

    Google Scholar 

  57. MacLean, P.D.: A triune concept of the brain and behavior. In: Boag, T.J., Campbell, D. (eds.) The Hincks Memorial Lectures, pp. 6–66. University of Toronto Press, Toronto (1973)

    Google Scholar 

  58. Marks, G.A., Shaffery, J.P., Okensberg, A., Speciale, S.G., Roffwarg, H.P.: A functional role for REM sleep in brain maturation. Behav. Brain Res. 69, 1–11 (1995)

    Google Scholar 

  59. McGuire, B.A., Gilbert, C.D., Rivlin, P.K., Wiesel, T.N.: Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol. 305, 370–392 (1991)

    Google Scholar 

  60. Miller, K.D.: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through the activity dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994)

    Google Scholar 

  61. Miller, K.D.: Synaptic economics: competition and cooperation in correlation-based synaptic plasticity. Neuron 17, 371–374 (1996)

    Google Scholar 

  62. Mirmiran, M.: The function of fetal/neonatal rapid eye movement sleep. Behav. Brain Res. 69, 13–22 (1995)

    Google Scholar 

  63. Mitchison, G., Crick, F.: Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Brain Pharmacol. 79, 3661–3665 (1982)

    Google Scholar 

  64. Miyashita, M., Tanaka, S.: A mathematical model for the self-organization of orientation columns in visual cortex. NeuroReport 3, 69–72 (1992)

    Google Scholar 

  65. Model, P.G., Bornstein, M.B., Crain, S.M., Pappas, G.D.: An electron microscopic study of the development of synapses in cultured fetal mouse cerebrum continuously exposed to xylocaine. J. Cell Biol. 49, 362–371 (1971)

    Google Scholar 

  66. Montague, P.R.: The resource consumption principle: attention and memory in volumes of neural tissue. Proc. Natl. Acad. Sci. U.S.A. 93, 3691–3623 (1996)

    Google Scholar 

  67. Muir, D.R., Douglas, R.J.: From neural arbours to daisies. Cereb. Cortex 21, 1118–1133 (2011)

    Google Scholar 

  68. Muir, D.R., Da Costa, N.M.A., Girardin, C.C., Naaman, S., Omer, D.B., Ruesch, E., Grinvald, A., Douglas, R.J.: Embedding of cortical representations by the superficial patch system. Cereb. Cortex 21, 2244–2260 (2011)

    Google Scholar 

  69. Newman, J.D., Harris, J.C.: The scientific contributions of Paul D: MacLean. J. Nerv. Ment. Dis. 197, 3–5 (2009)

    Google Scholar 

  70. Obermayer, K., Ritter, H., Schulten, K.: A principle for the formation of the spatial structure of cortical feature maps. Proc. Natl. Acad. Sci. U.S.A. 87, 8345–8349 (1990)

    Google Scholar 

  71. Obermayer, K., Ritter, H., Schulten, K.: A model for the development of the spatial structure of retinotopic maps and orientation columns. IEICE Trans. Fundam. E75A, 537–545 (1992)

    Google Scholar 

  72. O’Connor, D.H., Wittenberg, G.M., Wang, SS-H.: Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005)

    Google Scholar 

  73. O’Connor, D.H., Wittenberg, G.M., Wang, SS-H.: Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. U.S.A. 102, 9679–9684 (2005)

    Google Scholar 

  74. Okomoto, H., Ichikawa, K.: A model for molecular mechanisms of synaptic competition for a finite resource. Biosystems 55, 65–71 (2000)

    Google Scholar 

  75. Paik, S-B., Ringach, D.L.: Retinal origin of orientation maps in visual cortex. Nat. Neurosci. 14, 919–925 (2011)

    Google Scholar 

  76. Papez, J.W.: A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38, 725–743 (1937)

    Google Scholar 

  77. Price, D.J.: The postnatal development of clustered intrinsic connections in area 18 of the visual cortex in kittens. Dev. Brain Res. 24, 31–38 (1986)

    Google Scholar 

  78. Rakic, P.: Specification of cerebral cortical areas. Science 241, 170–176 (1988)

    Google Scholar 

  79. Ringach, D.L.: On the origin of the functional architecture of the cortex. PLoS One 2 e251 (2007)

    Google Scholar 

  80. Robinson, P.A., Rennie, C.J., Wright, J.J.: Synchronous oscillations in the cerebral cortex. Phys. Rev. E 57, 4578–4588 (1998)

    Google Scholar 

  81. Rockland, K.S., Lund, J.S.: Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216, 303–318 (1983)

    Google Scholar 

  82. Ruthazer, E.S., Stryker, M.P.: The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996)

    Google Scholar 

  83. Schillen, T.B., König, P.: Binding by temporal structure in multiple feature domains of an oscillatory neural network. Biol. Cybern. 70, 397–405 (1994)

    Google Scholar 

  84. Scholl, D.A.: The Organization of the Cerebral Cortex. Wiley, New York (1956)

    Google Scholar 

  85. Sherk, H., Stryker, M.P.: Quantitative study of orientation selectivity in visually inexperienced kittens. J. Neurophysiol. 39, 63–70 (1976)

    Google Scholar 

  86. Shi, Y., Kirwan, P., Smith, J., Robinson, H.P.C., Livesey, F.J.: Human cerebral cortex development from pluripotent stem cells to functional cortical synapses. Nat. Neurosci. 15, 477–486 (2012)

    Google Scholar 

  87. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)

    Google Scholar 

  88. Sperry, R.W.: Problems Outstanding in the Evolution of Brain Function. James Arthur Lecture on the Evolution of the Human Brain. The American Museum of Natural History, New York (1964)

    Google Scholar 

  89. Steriade, M.: Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000)

    Google Scholar 

  90. Swindale, N.V.: A model for the formation of orientation columns. Proc. R. Soc. B. 215, 211–230 (1982)

    Google Scholar 

  91. Swindale, N.V.: A model for the coordinated development of columnar systems in primate striate cortex. Biol. Cybern. 66, 217–230 (1992)

    Google Scholar 

  92. Swindale, N.V.: The development of topography in the visual cortex: a review of models. Netw.: Comput. Neural Syst. 7, 161–247 (1996)

    Google Scholar 

  93. Tanaka, S.: Theory of self-organization of cortical maps: mathematical framework. Neural Netw. 3, 625–640 (1990)

    Google Scholar 

  94. Thomaidou, D., Mione, M.C., Cavanagh, J.F.R., Parnavelas, J.G.: Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17, 1075–1085 (1997)

    Google Scholar 

  95. Traub, R.D., Whittington, M.A., Stanford, I.M., Jefferys, J.G.R.: A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996)

    Google Scholar 

  96. Tsukada, M., Fukushima, Y.: A context dependent mechanism in hippocampal CA1 networks. Bull. Math. Biol. 73, 417–435 (2010). doi:10.1007/s11538-010-9566-8

    MathSciNet  Google Scholar 

  97. van Ooyen, A.: Competition in the development of nerve connections: a review of models. Netw.: Comput. Neural Syst. 12, R1–R47 (2001)

    Google Scholar 

  98. van Ooyen, A., Willshaw, D.J.: Competition for neurotrophic factor in the development of nerve connections. Proc. R. Soc. Lond. B. 266, 883–892 (1999)

    Google Scholar 

  99. von der Malsburg, C.: Self organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973)

    Google Scholar 

  100. Whittington, M.A., Faulkner, H.J., Doheny, H.C., Traub, R.D.: Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol. Ther. 86, 171–190 (2000)

    Google Scholar 

  101. Wiesel, T.N., Hubel, D.H.: Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158, 307–318 (1974)

    Google Scholar 

  102. Willshaw, D.J., von der Malsburg, C.: How patterned neural connections can be set up by self-organization. Proc. R. Soc. B. 194, 431–435 (1976)

    Google Scholar 

  103. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Google Scholar 

  104. Wright, J.J.: Generation and control of cortical gamma: findings from simulation at two scales. Neural Netw. 22, 373–384 (2009)

    Google Scholar 

  105. Wright, J.J.: Attractor dynamics and thermodynamic analogies in the cerebral cortex: synchronous oscillation, the background EEG, and the regulation of attention. Bull. Math. Biol. 73(2), 436–457 (2010). doi:10.1007/s11538-010-9562-z

    Google Scholar 

  106. Wright, J.J., Bourke, P.D.: On the dynamics of cortical development: synchrony and synaptic self-organization. Front. Comput. Neurosci. 7, 4 (2013)

    Google Scholar 

  107. Wright, J.J., Bourke, P.D., Chapman, C.L.: Synchronous oscillation in the cerebral cortex and object coherence: simulation of basic electrophysiological findings. Biol. Cybern. 83, 341–353 (2000)

    Google Scholar 

  108. Wright, J.J., Alexander, D.M., Bourke, P.D.: Contribution of lateral interactions in V1 to organization of response properties. Vis. Res. 46, 2703–2720 (2006)

    Google Scholar 

  109. Wright, J.J., Bourke, P.D.: On the dynamics of cortical development: synchrony and synaptic self-organization. Front. Comput. Neurosci. 7, 4 (2013). doi:10.3389/fncom.2013.00004

    Google Scholar 

  110. Yakovlev, P.I.: Motility, behaviour and the brain; stereodynamic organization and neural co-ordinates of behavior. J. Nerv. Ment. Dis. 107, 313–335 (1948)

    Google Scholar 

  111. Yu, Y-C., He, S., Chen, S., Fu, Y., Brown, K.N., Yao, X-H., Ma, J., Gao, K.P., Sosinsky, G.E., Huang, K., Shi, S-H.: Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–118 (2012)

    Google Scholar 

Download references

Acknowledgements

The material in this chapter was presented at the First Neural Field Conference, Reading University, UK, (2010), with support of JJW. Special acknowledgement is made of the courage and generosity of Adrienne Wright, in enabling this work, and its presentation on that occasion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, J.J., Bourke, P.D. (2014). Neural Field Dynamics and the Evolution of the Cerebral Cortex. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_18

Download citation

Publish with us

Policies and ethics