Skip to main content

Sample Preparation Techniques for GC

  • Chapter
  • First Online:
Practical Gas Chromatography
  • 6725 Accesses

Abstract

Sample preparation is still considered the most time-consuming and error-prone step within the analytical process in many research fields. This is particularly true in food and environmental analysis where the complexity of many of the investigated matrices and the low concentration levels at which the target compounds should be accurately determined made necessary the use of tedious and highly manipulative multistep sample preparation protocols. This chapter reviews current state of the art in the field of sample preparation for combined use with gas chromatographic-based techniques. The most relevant developments achieved in the last two decades in this active research area have been reviewed and discussed on the basis of representative application studies primarily taken from the environmental and food fields. As in other research areas, miniaturisation and increased integration of the several treatment steps typically required for the preparation of these matrices are revealed as the most relevant trends within this step of the analytical process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DDME:

Drop-to-drop micro-extraction

DLLME:

Dispersive liquid–liquid micro-extraction

DPX:

Disposable pipette extraction

d-SPE:

Dispersive solid-phase extraction

HF(2/3)ME:

Hollow fibre-protected two/three-phase micro-extraction

HS:

Headspace

ISPE:

Immuno solid-phase extraction

LLE:

Liquid–liquid extraction

LVI:

Large volume injection

MAE:

Microwave-assisted extraction

MEPS:

Micro-extraction in packed syringe

MIP:

Molecular imprinted polymer

MSPD:

Matrix solid-phase dispersion

nd-SPME:

Non-depletive solid-phase micro-extraction

PLE:

Pressurised liquid extraction

SBSE:

Stir-bar-sorptive extraction

SDME:

Single-drop micro-extraction

SFE:

Supercritical fluid extraction

SLE:

Solid–liquid extraction

SME:

Solvent micro-extraction

SPE:

Solid-phase extraction

SPME:

Solid-phase micro-extraction

USE:

Ultrasound-assisted extraction

References

  1. Slobodnik J, Hogenboom AC, Vreuls JJ, Rontree JA, van Baar BLM, Niessen WMA, Brinkman UAT (1996) Trace-level determination of pesticide residues using on-line solid-phase extraction-column liquid chromatography with atmospheric pressure ionization mass spectrometric and tandem mass spectrometric detection. J Chromatogr A 741:59–74

    Article  CAS  Google Scholar 

  2. Hogenboom AC, Hofman MP, Jolly DA, Niessen WMA, Brinkman UAT (2000) On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection. J Chromatogr A 885:377–388

    Article  CAS  Google Scholar 

  3. Mol HGJ, Janssen H-GM, Cramers CA, Vreuls JJ, Brinkman UAT (1995) Trace-level analysis of micropollutants in aqueous samples using gas-chromatography with on-line sample enrichment and large-volume injection. J Chromatogr A 703:277–307

    Article  CAS  Google Scholar 

  4. Vreuls JJ, Louter AJ, Brinkman UAT (1999) On-line combination of aqueous-sample preparation and capillary gas chromatography. J Chromatogr A 842:391–426

    Article  Google Scholar 

  5. Kokosa JM, Przyjazny A, Jennot MA (2009) Solvent microextraction. Theory and practice. Wiley, Hoboken, NJ

    Google Scholar 

  6. Ramos L, Ramos JJ, Brinkman UAT (2005) Miniaturization in sample treatment for environmental analysis. Anal Bioanal Chem 318:219–240

    Google Scholar 

  7. de Koning S, Janssen H-G, Brinkman UAT (2009) Modern methods of sample preparation for GC analysis. Chromatographia 69:S33–S78

    Article  Google Scholar 

  8. Aragon A, Cortes JM, Toledano RM, Villen J, Vazquez A (2011) Analysis of wax esters in edible oils by automated on-line coupling liquid chromatography-gas chromatography using the through oven transfer adsorption desorption (TOTAD) interface. J Chromatogr A 1218:4960–4965

    Article  CAS  Google Scholar 

  9. Hyötyläinen T (2009) Critical evaluation of sample preparation techniques. Anal Bioanal Chem 394:743–758

    Article  Google Scholar 

  10. Nerín C, Salafranca J, Aznar M, Batlle R (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393:809–833

    Article  Google Scholar 

  11. Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153:36–53

    Article  CAS  Google Scholar 

  12. Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. Trends Anal Chem 29:1–14

    Article  CAS  Google Scholar 

  13. Wardencki W, Curylo J, Namiesnik J (2007) Trends in solventless sample preparation techniques for environmental analysis. J Biochem Biophys Methods 70:275–288

    Article  CAS  Google Scholar 

  14. Jeannot MA, Cantwell FF (1997) Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal Chem 69:235–239

    Article  CAS  Google Scholar 

  15. He Y, Lee HK (1997) Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal Chem 69:4634–4640

    Article  CAS  Google Scholar 

  16. de Jager LS, Andrews ARJ (2001) Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography. J Chromatogr A 911:97–105

    Article  Google Scholar 

  17. Wu HF, Yen JH, Chin CC (2006) Combining drop-to-drop solvent microextraction with gas chromatography/mass spectrometry using electronic ionization and self-ion/molecule reaction method to determine methoxyacetophenone isomers in one drop of water. Anal Chem 78:1707–1712

    Article  CAS  Google Scholar 

  18. Shen G, Lee HK (2003) Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection. Anal Chem 75:98–103

    Article  CAS  Google Scholar 

  19. Ouyang G, Zhao W, Pawliszyn J (2007) Automation and optimization of liquid-phase microextraction by gas chromatography. J Chromatogr A 1138:47–54

    Article  CAS  Google Scholar 

  20. Kokosa JM, Przyjazny A, Jones R (2007) Paper 1680-4, presented at PittCon 2007, Chicago

    Google Scholar 

  21. Ma M, Cantwell FF (1999) Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop. Anal Chem 71:388–393

    Article  CAS  Google Scholar 

  22. Ouyang G, Pawliszyn J (2006) Kinetic calibration for automated hollow fiber-protected liquid-phase microextraction. Anal Chem 78:5783–5788

    Article  CAS  Google Scholar 

  23. Rezaee M, Assadi Y, Milani-Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  24. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  25. Negreira N, Rodriguez I, Rubi E, Cela R (2010) Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the rapid and sensitive determination of UV filters in environmental water samples. Anal Bioanal Chem 398:995–1004

    Article  CAS  Google Scholar 

  26. Fattahi N, Assadi Y, Hosseini MRM, Jahromi EZ (2007) Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. J Chromatogr A 1157:23–29

    Article  CAS  Google Scholar 

  27. Cunha SC, Fernandes JO (2010) Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS). Talanta 83:117–125

    Article  CAS  Google Scholar 

  28. Cunha SC, Almeida C, Mendes E, Fernandes JO (2011) Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry. Food Addit Contam 28:513–526

    Article  CAS  Google Scholar 

  29. Cunha SC, Fernandes JO, Oliveira MBPP (2009) Fast analysis of multiple pesticide residues in apple juice using dispersive liquid-liquid microextraction and multidimensional gas chromatography-mass spectrometry. J Chromatogr A 1219:8835–8844

    Article  Google Scholar 

  30. Liu X, Zhao A, Zhang A, Liu H, Xiao W, Wang C, Wang X (2011) Dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry determination of polychlorinated biphenyls and polybrominated diphenyl ethers in milk. J Sep Sci 34:1084–1090

    Article  Google Scholar 

  31. Hu J, Fu LY, Zhao XN, Liu XJ, Wang HL, Wang XD, Dai LY (2009) Dispersive liquid-liquid microextraction combined with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils. Anal Chim Acta 640:100–105

    Article  CAS  Google Scholar 

  32. Dallüge J, Hankemeier T, Vreuls JJ, Brinkman UAT (1999) On-line coupling of immunoaffinity-based solid-phase extraction and gas chromatography for the determination of s-triazines in aqueous samples. J Chromatogr A 830:377–386

    Article  Google Scholar 

  33. Fontanals N, Marcé RM, Borrull F (2007) New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 1152:14–31

    Article  CAS  Google Scholar 

  34. Tamayo FG, Turiel E, Martin-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152:32–40

    Article  CAS  Google Scholar 

  35. Lacorte S, Guiffard I, Fraisse D, Barceló D (2000) Broad spectrum analysis of 109 priority compounds listed in the 76/464/CEE Council Directive using solid-phase extraction and GC/EI/MS. Anal Chem 72:1430–1440

    Article  CAS  Google Scholar 

  36. Hankemeier T, van Leeuwen SPJ, Vreuls JJ, Brinkman UAT (1998) Use of a presolvent to include volatile organic analytes in the application range of on-line solid-phase extraction–gas chromatography–mass spectrometry. J Chromatogr A 811:117–133

    Article  CAS  Google Scholar 

  37. Ewald JC, Heux S, Zamboni N (2009) High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal Chem 81:3623–3629

    Article  CAS  Google Scholar 

  38. Abdel-Rehima M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701:119–128

    Article  Google Scholar 

  39. Fritz JS, Masso JJ (2001) Miniaturized solid-phase extraction with resin disks. J Chromatogr A 909:79–85

    Article  CAS  Google Scholar 

  40. Baltussen E, Cramers C, Sandra P (2002) Sorptive sample preparation – a review. Anal Bioanal Chem 373:3

    Article  CAS  Google Scholar 

  41. Gangfeng O, Pawliszyn J (2006) SPME in environmental analysis. Anal Bioanal Chem 386:1059–1073

    Article  Google Scholar 

  42. Hiroyuki K, Keita S (2011) Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 54:926–950

    Article  Google Scholar 

  43. Vuckovic D, Zhang X, Cudjoe E, Pawliszyn J (2010) Solid-phase microextraction in bioanalysis: new devices and directions. J Chromatogr A 1217:4041–4060

    Article  CAS  Google Scholar 

  44. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) Recent developments and applications of stir bar sorptive extraction. J Sep Sci 32:813–824

    Article  CAS  Google Scholar 

  45. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152:54–69

    Article  CAS  Google Scholar 

  46. Sandra P, Tienpont B, David F (2003) Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction–thermal desorption–capillary gas chromatography–mass spectrometry. J Chromatogr A 1000:299–309

    Article  CAS  Google Scholar 

  47. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernandez LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217:2642–2666

    Article  CAS  Google Scholar 

  48. Sanchez-Avila J, Quintana J, Ventura F, Tauler R, Duarte CM, Lacorte S (2010) Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing directives. Mar Pollut Bull 60:103–112

    Article  CAS  Google Scholar 

  49. Jahnke A, Mayer P (2010) Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals? J Chromatogr A 1217:4765–4770

    Article  CAS  Google Scholar 

  50. Chia K-J, Lee T-Y, Huang S-D (2004) Simple device for the solid-phase microextraction screening of polychlorodibenzo-p-dioxins and polychlorodibenzofurans in heavily contaminated soil samples. Anal Chim Acta 527:157–162

    Article  CAS  Google Scholar 

  51. Bouaid A, Ramos L, González MJ, Fernández P, Cámara C (2001) Solid-phase microextraction method for the determination of atrazine and four organophosphorus pesticides in soil samples by gas chromatography. J Chromatogr A 939:13–21

    Article  CAS  Google Scholar 

  52. Martinez-Parreno M, Llorca-Porcel J, Valor I (2008) Analysis of 51 persistent organic pollutants in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction GC-MS. J Sep Sci 31:3620–3629

    Article  CAS  Google Scholar 

  53. Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183

    Article  CAS  Google Scholar 

  54. Ter Laak TL, Mayer P, Busser FJM, Klamer HJC, Hermens JLM (2005) Sediment dilution method to determine sorption coefficients of hydrophobic organic chemicals. Environ Sci Technol 39:4220–4225

    Article  Google Scholar 

  55. Schubert JK, Miekisch W, Fuchs P, Scherzer N, Lord H, Pawliszyn J, Mundkowski RG (2007) Determination of antibiotic drug concentrations in circulating human blood by means of solid phase micro-extraction. Clin Chim Acta 386:57–62

    Article  CAS  Google Scholar 

  56. Roy G, Vuillemin R, Guyomarch J (2005) On-site determination of polynuclear aromatic hydrocarbons in seawater by stir bar sorptive extraction (SBSE) and thermal desorption GC-MS. Talanta 66:540–546

    Article  CAS  Google Scholar 

  57. Anastassiades M, Lehotay S, Stajnbaher D, Schenk F (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  Google Scholar 

  58. Wilkowska A, Biziuk M (2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125:803–812

    Article  CAS  Google Scholar 

  59. Mastovska K, Lehotay SJ (2006) Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices. Food Chem 54:7001–7008

    Article  CAS  Google Scholar 

  60. Plossl F, Giera M, Bracher F (2006) Multiresidue analytical method using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry to determine pharmaceuticals in whole blood. J Chromatogr A 1135:19–26

    Article  Google Scholar 

  61. Kovatsi L, Rentifis K, Giannakis D, Njau S, Samanidou V (2011) Disposable pipette extraction for gas chromatographic determination of codeine, morphine, and 6-monoacetylmorphine in vitreous humor. J Sep Sci 34:1716–1721

    Article  CAS  Google Scholar 

  62. Guan HX, Brewer WE, Garris ST, Craft C, Morgan SL (2010) Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A 1217:1867–1874

    Article  CAS  Google Scholar 

  63. Luque-Garcia JL, Luque de Castro MD (2004) Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment – application to the extraction of total fat from oleaginous seeds. J Chromatogr A 1034:237–242

    Article  CAS  Google Scholar 

  64. Luque-Garcia JL, Luque de Castro MD (2004) Focused microwave-assisted Soxhlet extraction: devices and applications. Talanta 64:571–577

    Article  CAS  Google Scholar 

  65. Sithole BB, Vollstaedt P, Allen LH (1991) Comparison of Soxtec and Soxhlet systems for determining extractives contents. Tappi J 74:187–191

    CAS  Google Scholar 

  66. Smith RM (2003) Before the injection – modern methods of sample preparation for separation techniques. J Chromatogr A 1000:3–27

    Article  CAS  Google Scholar 

  67. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice. Butterworths, London

    Google Scholar 

  68. Kristenson EM, Shahmiri S, Slooten CJ, Vreuls JJ, Brinkman UAT (2004) Matrix solid-phase dispersion micro-extraction of pesticides from single insects with subsequent GC–MS analysis. Chromatographia 59:315–320

    CAS  Google Scholar 

  69. Kristenson EM, Ramos L, Brinkman UAT (2006) Recent advances in matrix solid-phase dispersion. Trends Anal Chem 25:96–111

    Article  CAS  Google Scholar 

  70. Torres CM, Picó Y, Redondo MJ, Mañes J (1996) Matrix solid-phase dispersion extraction procedure for multiresidue pesticide analysis in oranges. J Chromatogr A 719:95–103

    Article  CAS  Google Scholar 

  71. de la Cal A, Eljarrat E, Barcelo D (2003) Determination of 39 polybrominated diphenyl ether congeners in sediment samples using fast selective pressurized liquid extraction and purification. J Chromatogr A 1021:165–173

    Article  Google Scholar 

  72. Ramos JJ, Gonzalez MJ, Ramos L (2004) Miniaturised sample preparation of fatty foodstuffs for the determination of polychlorinated biphenyls. J Sep Sci 27:595–601

    Article  CAS  Google Scholar 

  73. Morzycka B (2002) Simple method for the determination of trace levels of pesticides in honeybees using matrix solid-phase dispersion and gas chromatography. J Chromatogr A 982:267–273

    Article  CAS  Google Scholar 

  74. Kristenson EM, Haverkate EGJ, Slooten CJ, Ramos L, Vreuls JJ, Brinkman UAT (2001) Miniaturized automated matrix solid-phase dispersion extraction of pesticides in fruit followed by gas chromatographic–mass spectrometric analysis. J Chromatogr A 917:277–286

    Article  CAS  Google Scholar 

  75. Ramos L, Kristenson EM, Brinkman UAT (2002) Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A 975:3–27

    Article  CAS  Google Scholar 

  76. Mendiola JA, Herrero M, Cifuentes A, Ibañez E (2007) Use of compressed fluids for sample preparation: food applications. J Chromatogr A 1152:234–246

    Article  CAS  Google Scholar 

  77. Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18

    Article  CAS  Google Scholar 

  78. Crescenzi C, Di Corcia A, Nazzari M, Samperi R (2000) Hot phosphate-buffered water extraction coupled on line with liquid chromatography/mass spectrometry for analyzing contaminants in soil. Anal Chem 72:3050–3055

    Article  CAS  Google Scholar 

  79. Westerbom R, Sporring S, Cederberg L, Linderroth LO, Bjöklund E (2008) Selective pressurized liquid extraction of polychlorinated biphenyls in sediment. Anal Sci 24:531–533

    Article  Google Scholar 

  80. Ramos JJ, Dietz C, González MJ, Ramos L (2007) Miniaturised selective pressurized liquid extraction of polychlorinated biphenyls. J Chromatogr A 1152:254–261

    Article  CAS  Google Scholar 

  81. Hu XG, Zhou QX (2011) Comparisons of microwave-assisted extraction, simultaneous distillation-solvent extraction, Soxhlet extraction and ultrasound probe for polycyclic musks in sediments: recovery, repeatability, matrix effects and bioavailability. Chromatographia 74:489–495

    Article  CAS  Google Scholar 

  82. Itoh N, Fushimi A, Yarita T, Aoyagi Y, Numata M (2011) Accurate quantification of polycyclic aromatic hydrocarbons in dust samples using microwave-assisted solvent extraction combined with isotope-dilution mass spectrometry. Anal Chim Acta 699:49–56

    Article  CAS  Google Scholar 

  83. Niell S, Pareja L, Gonzalez G, Gonzalez J, Vryzas Z, Cesio MV, Papadopoulou-Mourkidou E, Heinzen H (2011) Simple determination of 40 organophosphate pesticides in raw wool using microwave-assisted extraction and GC-FPD analysis. J Agric Food Chem 59:7601–7608

    Article  CAS  Google Scholar 

  84. Priego-Capote F, Luque de Castro MD (2004) Analytical uses of ultrasound – I. Sample preparation. Trends Anal Chem 23:644–653

    Article  CAS  Google Scholar 

  85. Saim N, Dean JR, Abdullah MP, Zakaria M (1997) Extraction of polycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction, pressurised and atmospheric microwave-assisted extraction, supercritical fluid extraction and accelerated solvent extraction. J Chromatogr A 791:361–366

    Article  CAS  Google Scholar 

  86. Ericsson M, Colmsjö A (2002) Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction: determination of polycyclic aromatic hydrocarbons in sediment and soil. J Chromatogr A 964:11–20

    Article  CAS  Google Scholar 

  87. Ericsson M, Colmsjö A (2003) Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction and large-volume injection gas chromatography: determination of organophosphate esters in air samples. Anal Chem 75:1713–1719

    Article  CAS  Google Scholar 

  88. Sanchez C, Ericsson M, Carlsson H, Colmsjö A, Dyremark E (2002) Dynamic sonication-assisted solvent extraction of organophosphate esters in air samples. J Chromatogr A 957:227–234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author thanks MINECO (CTQ2010-32957) and CM and FEDER program (project S2009/AGR-1464, ANALISYC-II) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramos, L. (2014). Sample Preparation Techniques for GC. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_16

Download citation

Publish with us

Policies and ethics