Skip to main content

Visible Light Imaging

  • Chapter
  • First Online:
Imaging with Electromagnetic Spectrum

Abstract

The visible light is that region of the electromagnetic spectrum that is detectable by the human eye, whose wavelength ranges from 400 to 700 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah MZ, Aziz SA, Mohamed AMD (2000) Quality inspection of bakery products using a color-based machine vision system. J Food Qual 23:39–50

    Article  Google Scholar 

  • Alirezaei M, Zare D, Nassiri SM (2013) Application of computer vision for determining viscoelastic characteristics of date fruits. J Food Eng 118:326–332

    Article  Google Scholar 

  • Batchelor MM, Searcy SW (1989) Computer vision determination of stem/root joint on processing carrots. J Agric Eng Res 43:259–269

    Article  Google Scholar 

  • Brosnan T, Sun D-W (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16

    Article  Google Scholar 

  • Chen YR, Chao K, Kim MS (2002) Machine vision technology for agricultural applications. Comput Electron Agric 36:173–191

    Article  Google Scholar 

  • Chmiel M, Slowinski M, Dasiewicz K (2011) Application of computer vision systems for estimation of fat content in poultry meat. Food Control 22:1424–1427

    Article  Google Scholar 

  • Costa C, Menesatti P, Aguzzi J, D’Andrea S, Antonucci F, Rimatori V et al (2010) External shape differences between sympatric populations of commercial clams tapes decussates and T. Philippinarum. Food Bioprocess Technol 3(1):43–48

    Article  Google Scholar 

  • Davidson VJ, Ryks J, Chu T (2001) Fuzzy models to predict consumer ratings for biscuits based on digital features. IEEE Trans Fuzzy Syst 9(1):62–67

    Article  Google Scholar 

  • Dowlati M, Mohtasebi SS and Guardia MDL (2012) Application of machine vision techniques to fish-quality assessment Trends anal chem 40:168–179

    Google Scholar 

  • Du CJ, Sun D-W (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249

    Article  Google Scholar 

  • Du C-J, Sun D-W (2006) Learning techniques used in computer vision for food quality evaluation: a review. J Food Eng 72(1):39–55

    Article  Google Scholar 

  • Du C-J and Sun D-W (2008) Object classification methods Computer vision technology for food quality evaluation, Elsevier, 81–83

    Google Scholar 

  • ElMasry G, Sun D-W (2010) Principles of hyperspectral imaging technology. Hyperspectral imaging for food quality analysis and control. Academic Press, San Diego, California, USA, pp 3–43

    Chapter  Google Scholar 

  • ElMasry G, Cubero S, Moltó E, Blasco J (2012) In-line sorting of irregular potatoes by using automated computer-based machine vision system. J Food Eng 112:60–68

    Article  Google Scholar 

  • Fairchild MD (2005) Color appearance models, 2nd edn. Wiley, England

    Google Scholar 

  • Fernandez-Vazquez R, Stinco CM, Melendez-Martinez AJ, Heredia FJ, Vicario IM (2011) Visual and instrumental evaluation of orange juice color: a consumers’ preference study. J Sens Stud 26:436–444

    Article  Google Scholar 

  • Gerrard DE, Gao X, Tan J (1996) Beef marbling and colour score determination by image processing. J Food Sci 61(1):145–148

    Article  Google Scholar 

  • Girolami A, Napolitano F, Faraone D, Braghieri A (2013) Measurement of meat color using a computer vision system. Meat Sci 93:111–118

    Article  Google Scholar 

  • Go¨kmen V, Senyuva HZ, Du¨lek B, Cetin AE (2007) Computer vision-based image analysis for the estimation of acrylamide concentrations of potato chips and French fries. Food Chem 101:791–798

    Article  Google Scholar 

  • Gonsalves CMB, Coutinho AP and Marrucho IM (2011) Poly (lactic acid) synthesis, structures, properties, processing and application, Wiley, 97–100

    Google Scholar 

  • Gonzalez RC and Woods RE (2007) Digital image processing. (3rd Ed). Pearson International Edition, 416–429

    Google Scholar 

  • Gunasekaran S (1996) Computer vision technology for food quality assurance. Trends Food Sci Technol 7:245–256

    Article  Google Scholar 

  • Gunasekaran S, Ding K (1993) Using computer vision for food quality evaluation. Food Technol 6:151–154

    Google Scholar 

  • Hatcher DW, Symons SJ (2000) Influence of sprout damage on oriental noodle appearance by image analysis. Cereal Chem 77:380–387

    Article  Google Scholar 

  • Hatcher DW, Symons SJ, Manivannan U (2004) Developments in the use of image analysis for the assessment of oriental noodle appearance and color. J Food Eng 61:109–117

    Article  Google Scholar 

  • Hayashi S, Kanuma T, Ganno K and Sakaue O (1998) Cabbage head recognition and size estimation for development of a selective harvester. In ASAE Annual International Meeting, Paper No 983042, ASAE. St. Joseph, Michigan, USA

    Google Scholar 

  • Heinemann PH, Hughes R, Morrow CT, Sommer HJ, Beelman RB, Wuest PJ (1994) Grading of mushrooms using a machine vision system. Trans ASAE 37(5):1671–1677

    Article  Google Scholar 

  • Hepworth N, Hammond J, Varley J (2004) Novel application of computer vision to determine bubble size distributions in beer. J Food Eng 61(1):119–124

    Google Scholar 

  • Howarth MS and Searcy SW (1992) Inspection of fresh carrots by machine vision. In: Food Processing Automation II Proceedings of the ASAE Conference . St. Joseph, Michigan, USA, 1992

    Google Scholar 

  • Jackman P, Sun D-W, Allen P (2011) Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci Technol 22:185–197

    Article  Google Scholar 

  • Jha SN (2010) Non–destructive evaluation of food quality. Springer, Heidelberg, pp 18–22

    Book  Google Scholar 

  • Jin S, Yin Y (2010) Research on rapid detection of total bacteria in juice based on biometic pattern recognition and machine vision. In: 2010 3rd IEEE international conference on computer science and information technology (ICCSIT), vol 6, pp 395–399

    Google Scholar 

  • Kause A, Stien LH, Rungruangsak-Torrissen K, Ritola O, Ruohonen K, Kiessling A (2008) Image analysis as a tool to facilitate selective breeding of quality traits in rainbow trout. Livestock Sci 114(2):315–324

    Article  Google Scholar 

  • Kilic K, Boyacı IH, Koksel H, Ku¨smenog˘lu I (2007) A classification system for beans using computer vision system and artificial neural networks. J Food Eng 78:897–904

    Article  Google Scholar 

  • Klibansky N, Juanes F (2008) Procedures for efficiently producing high-quality fecundity data on a small budget. Fish Res 89(1):84–89

    Article  Google Scholar 

  • Kondo N, Ahmada U, Montaa M, Muraseb H (2000) Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Comput Electron Agric 29(1–2):135–147

    Article  Google Scholar 

  • Lana MM, Tijskens LMM, van Kooten O (2005) Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes. Postharvest Biol Technol 35:87–95

    Article  Google Scholar 

  • Leon K, Mery D, Pedreschi F, Leon J (2006) Color measurement in L*a*b* units from RGB digital images. Food Res Int 39:1084–1091

    Article  Google Scholar 

  • Linker R, Cohen O, Naor A (2012) Determination of the number of green apples in RGB images recorded in orchards. Comput Electron Agric 81:45–57

    Article  Google Scholar 

  • Liu J and Paulsen MR (1997) Corn whiteness measurement and classification using machine vision ASAE Annual International Meeting, Technical Papers, Paper No. 973045, 1997

    Google Scholar 

  • Liu L, Cozzolino D, Cynkar WU, Gishen M, Colby CB (2006) Geographic classification of Spanish and Australian Tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. J Agric Food Chem 54(18):6754–6759

    Article  Google Scholar 

  • Liu F, He Y, Wang L, Pan H (2007) Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. J Food Eng 83:430–435

    Article  Google Scholar 

  • Liu F, Ye X, He Y and Wang L (2009) Application of visible/near infrared spectroscopy and chemometric calibrations for variety discrimination of instant milk teas. J Food Eng 93:127–133

    Google Scholar 

  • Loannou I, Perrot N, Hossenlopp J, Mauris G, Trystram G (2002) The fuzzy set theory: a helpful tool for the estimation of sensory properties of crusting sausage appearance by a single expert. Food Qual Prefer 13(7–8):589–595

    Google Scholar 

  • Lou W, Nakai S (2001) Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int 34:573–579

    Google Scholar 

  • Lu J, Tan J, Shatadal P, Gerrard DE (2000) Evaluation of pork color by using computer vision. Meat Sci 56:57–60

    Article  Google Scholar 

  • Mancini RA, Hunt MC (2005) Current research in meat color. Meat Sci 71:100–121

    Article  Google Scholar 

  • Marchal PC, Gila DM, García JG, Ortega JG (2013) Expert system based on computer vision to estimate the content of impurities in olive oil samples. J Food Eng 119:220–228

    Article  Google Scholar 

  • Martin MLGM, Ji W, Luo R, Hutchings J, Heredia FJ (2007) Measuring colour appearance of red wines. Food Qual Prefer 18:862–871

    Article  Google Scholar 

  • Matiacevich S, Silva P, Enrione J, Osorio F (2011) Quality assessment of blueberries by computer vision. Procedia Food Sci 1:421–425

    Article  Google Scholar 

  • McDonald T, Chen YR (1990) Separating connected muscle tissues in images of beef carcass ribeyes. Trans ASAE 33(6):2059–2065

    Article  Google Scholar 

  • Mendoza F, Aguilera JM (2004) Application of image analysis for classification of ripening bananas. J Food Sci 69:E471–E477

    Article  Google Scholar 

  • Mery D, Chanona-Pérez JJ, Soto A, Miguel Aguilera J, Cipriano A, Veléz-Rivera N, Arzate-Vázquez I, Gutiérrez-López GF (2010) Quality classification of corn tortillas using computer vision. J Food Eng 101:357–364

    Article  Google Scholar 

  • Munkevik P, Hall G, Duckett T (2007) A computer vision system for appearance-based descriptive sensory evaluation of meals. J Food Eng 78:246–256

    Article  Google Scholar 

  • Nagata M, Cao Q, Bato PM, Shrestha BP and Kinoshita O (1997) Basic study on strawberry sorting system in Japan. Annual International Meeting Technical Papers, Paper No. 973095, ASAE, 2950 Niles Road, St. Joseph, Michigan 49085-9659, USA

    Google Scholar 

  • Narendra VG, Hareesh KS (2010) Quality inspection and grading of agricultural and food products by computer vision—a review. Int J Comput Appl 43(2):975–8887

    Google Scholar 

  • Novell CG, Marin DP, Amigo JM, Novales JF, Guerrero JE, Varo AG (2012) Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras. J Food Eng 113(2):281–288

    Article  Google Scholar 

  • Pace B, Cefola M, Renna F, Attolico G (2011) Relationship between visual appearance and browning as evaluated by image analysis and chemical traits in fresh-cut nectarines. Postharvest Biol Technol 61:178–183

    Article  Google Scholar 

  • Park B, Chen YR, Nguyen M, Hwang H (1996) Characterising multispectral images of tumorous, bruised, skin-torn, and wholesome poultry carcasses. Trans ASAE 39(5):1933–1941

    Article  Google Scholar 

  • Payne A, Walsh K, Subedi P, Jarvis D (2013) Estimating mango crop yield using image analysis using fruit at ‘stone hardening’ stage and night time imaging. Comput Electron Agric 100:160–167

    Article  Google Scholar 

  • Pearson TC, Slaughter DC (1996) Machine vision system for automated detection of stained pistachio nuts. Trans ASAE 39:1203–1207

    Article  Google Scholar 

  • Rigney MP, Brusewitz GH, Kranzler GA (1992) Asparagus defect inspection with machine vision. Trans ASAE 35(6):1873–1878

    Google Scholar 

  • Robertson GL (2012) Food packaging principles and practice, 3rd edition, 326. CRC Press, Taylor and Francis group, UK

    Google Scholar 

  • Rodríguez-Pulido FJ, Ferrer-Gallego R, González-Miret ML, Rivas-Gonzalo JC, Escribano-Bailón MT, Heredia FJ (2012) Preliminary study to determine the phenolic maturity stage of grape seeds by computer vision. Anal Chim Acta 732:78–82

    Article  Google Scholar 

  • Russ JC (1999) Image processing handbook, 3rd edn. CRC Press & IEEE Press, USA

    Google Scholar 

  • Sapirstein HD (1995) Quality control in commercial baking: machine vision inspection of crumb grain in bread and cake products. In: Food Processing Automation IV Proceedings of the FPAC Conference, ASAE. St. Joseph, Michigan, USA

    Google Scholar 

  • Scanlon MG, Roller R, Mazza G, Pritchard MK (1994) Computerized video image-analysis to quantify color of potato chips. Am Potato J 71:717–733

    Article  Google Scholar 

  • Scott A (1994) Automated continuous online inspection, detection and rejection. Food Technol Europe 1(4):86–88

    Google Scholar 

  • Shafiee S, Minaei S, Moghaddam-Charkari N, Ghasemi-Varnamkhasti M, Barzegar M (2013) Potential application of machine vision to honey characterization. Trends Food Sci Technol 30:174–177

    Article  Google Scholar 

  • Shearer SA, Holmes RG (1990) Plant identification using colour co-occurrence matrices. Trans ASAE 33(6):2037–2044

    Google Scholar 

  • Shearer SA, Payne FA (1990) Colour and defect sorting of bell peppers using machine vision. Trans ASAE 33(6):2045–2050

    Google Scholar 

  • Sivertsen AH, Chu C-K, Wang L-C, Godtliebsen F, Heia K, Nilsen H (2009) Ridge detection with application to automatic fish fillet inspection. J Food Eng 90(2):317–324

    Google Scholar 

  • Stone ML, Kranzler GA (1992) Image based ground velocity measurement. Trans ASAE 35(5):1729–1734

    Article  Google Scholar 

  • Sun DW (2000) Inspecting pizza topping percentage and distribution by a computer vision method. J Food Eng 44:245–249

    Article  Google Scholar 

  • Sun DW, Brosnan T (2003) Pizza quality evaluation using computer vision–part 1 Pizza base and sauce spread. J Food Eng 57(2003):81–89

    Article  Google Scholar 

  • Sun FX, Chang YW, Zhou ZM, Yu YF (2004) Determination of beer color using image analysis. J Am Soc Brew Chem 62:163–167

    Google Scholar 

  • Sun D-W (ed) (2008) Computer vision technology for food quality evaluation. Academic Press, Waltham

    Google Scholar 

  • Tan J, Gao X, Gerrard DE (1999) Application of fuzzy sets and neural networks in sensory analysis. J Sens Stud 14:119–138

    Article  Google Scholar 

  • Tao Y, Heinemann PH, Varghese Z, Morrow CT, Sommer HJIII (1995) Machine vision for colour inspection of potatoes and apples. Trans ASAE 38:1555–1561

    Article  Google Scholar 

  • Tarbell KA, Reid JF (1991) A computer vision system for characterising corn growth and development. Trans ASAE 34(5):2245–2249

    Article  Google Scholar 

  • Throop JA, Aneshansley DJ, Upchurch BL (1993) Near-IR and color imaging for bruise detection on Golden Delicious apples Proc SPIE 1836, 33–44

    Google Scholar 

  • Tillett RD (1990) Image analysis for agricultural processes division note DN 1585, Silsoe Research Institute

    Google Scholar 

  • Timmermans AJM (1998) Computer vision system for online sorting of pot plants based on learning techniques. Acta Horticulturae 421:91–98

    Google Scholar 

  • Tothill I (2003) Rapid and on-line instrumentation for food quality assurance. Woodhead Publishing, UK, pp 8–13

    Book  Google Scholar 

  • Ulrici A, Foca G, Lelo MC, Volpelli LA, Fiego DPL (2012) Automated identification and visualization of food defects using RGB imaging: application to the detection of red skin defect of raw hams. Innovative Food Sci Emerg Technol 16:417–426

    Article  Google Scholar 

  • Unklesbay K, Unklesbay N, Keller J (1986) Determination of internal color of beef ribeye steaks using digital image-analysis. Food Microstruct 5:227–231

    Google Scholar 

  • Wang H-H, Sun D-W (2001) Evaluation of functional properties of cheddar cheese using a computer vision method. J Food Eng 49:49–53

    Article  Google Scholar 

  • Wang H-H, Sun D-W (2002a) Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision techniques. J Food Eng 52:279–284

    Article  Google Scholar 

  • Wang H-H, Sun D-W (2002b) Melting characteristics of cheese: analysis of effects of cooking conditions using computer vision technology. J Food Eng 51:305–310

    Article  Google Scholar 

  • Wang Q, Wang H, Xie L, Zhang Q (2012) Outdoor color rating of sweet cherries using computer vision. Comput Electron Agric 87:113–120

    Article  Google Scholar 

  • Wu D, Sun D-W (2013) Colour measurements by computer vision for food quality control—a review. Trends Food Sci Technol 29:5–20

    Article  Google Scholar 

  • Yam KL, Papadakis SE (2004) A simple digital imaging method for measuring and analyzing color of food surfaces. J Food Eng 61:137–142

    Article  Google Scholar 

  • Yan YL, Zhao LL, Han DH, Yang SM (2005) The foundation and application of near-infrared spectroscopy analysis, 32, 1st edn. China Light Industry Press, Beijing

    Google Scholar 

  • Zheng C, Sun D-W, Zheng L (2006a) Recent developments and application of image features for food quality evaluation and inspection—a review. Trends Food Sci Technol 17:642–655

    Article  Google Scholar 

  • Zheng C, Sun D-W, Zheng L (2006b) Correlating color to moisture content of large cooked beef joints by computer vision. J Food Eng 77:858–863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetha Udayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Udayakumar, N. (2014). Visible Light Imaging. In: Manickavasagan, A., Jayasuriya, H. (eds) Imaging with Electromagnetic Spectrum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54888-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54888-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54887-1

  • Online ISBN: 978-3-642-54888-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics