Skip to main content

Xerostomia and the Oral Microflora

  • Chapter
  • First Online:
Dry Mouth

Abstract

Xerostomia is the feeling of a dry mouth usually caused by hyposalivation. It may occur after radiation therapy of the head and neck, in systemic diseases such as Sjögren’s syndrome, or as a side effect of medication. Hyposalivation changes the oral microbiome with the most dramatic changes after radiation therapy. The number of lactobacilli and Candida albicans increases. Also the number of mutans streptococci increases in hyposalivated subjects, but sugar consumption is a stronger determinant for the level of mutans streptococci. Hyposalivated subjects are more susceptible to oral infections such as caries and mucosal infections. This is both caused by changes in the oral microflora and weakening of salivary protection mechanisms such as cleansing by the salivary flow and buffering capacity.

In the case of ventilated patients at intensive care units, hyposalivation leads to accumulation of dental plaque and a shift in microflora, which may cause lung infections. Oral hygiene in combination with oral antiseptics reduces the risk for lung infections in these patients.

Therapies for xerostomia consist of artificial saliva, gels, or spray. These products may contain polymers that form a microbial substrate. Application of salivary antimicrobial substances like lysozyme, lactoferrin, or lactoperoxidase in these products did not lead to lower microbial counts in vivo.

In conclusion, hyposalivation leads to changes in the oral microflora. In combination with a lower defense, this leads to a higher susceptibility to oral infections such as caries and mucosal infections. There is a need for products normalizing the oral microflora and thereby decreasing the risk of oral diseases in subjects with hyposalivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tschoppe P, Wolgin ABM, Pischon N, Kielbassa AM. Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int. 2010;41:321–33.

    PubMed  Google Scholar 

  2. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8:3–11.

    Article  PubMed  Google Scholar 

  3. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.

    Article  PubMed  Google Scholar 

  7. Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci. 2011;3:49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wickström C, Herzberg MC, Beighton D, Svensater G. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology. 2009;155:2866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van der Hoeven JS, van den Kieboom CWA, Camp PJM. Utilization of mucin by oral Streptococcus species. Antonie Van Leeuwenhoek. 1990;57:165–72.

    Google Scholar 

  10. Biyikoglu B, Ricker A, Diaz PI. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development. Anaerobe. 2012;18:459–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rudiger SG, Dahlen G, Carlen A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination. Acta Odontol Scand. 2012;70:615–21.

    Article  PubMed  Google Scholar 

  12. Gibbons RJ. Role of adhesion in microbial colonization of host tissues: a contribution of oral microbiology. J Dent Res. 1996;75:866–70.

    Article  PubMed  Google Scholar 

  13. Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socransky SS, Oppenheim FG. Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol. 2004;97:1311–8.

    Article  PubMed  Google Scholar 

  14. Kolenbrander PE, Palmer Jr RJ, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000. 2006;42:47–79.

    Article  PubMed  Google Scholar 

  15. Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90:1271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davison G, Allgrove J, Gleeson M. Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise. Eur J Appl Physiol. 2009;106:277–84.

    Article  PubMed  Google Scholar 

  17. Brown LR, Dreizen S, Handler S, Johnston DA. Effect of radiation-induced xerostomia on human oral microflora. J Dent Res. 1975;54:740–50.

    Article  PubMed  Google Scholar 

  18. Llory H, Dammron A, Gioanni M, Frank RM. Some population changes in oral anaerobic microorganisms, Streptococcus mutans and yeasts following irradiation of the salivary glands. Caries Res. 1972;6:298–311.

    Article  PubMed  Google Scholar 

  19. AlmståhI A, Wikström M, Stenberg I, Jakobsson A, Fagerberg-Mohlin B. Oral microbiota associated with hyposalivation of different origins. Oral Microbiol Immunol. 2003;18:1–8.

    Article  PubMed  Google Scholar 

  20. Grotz KA, Genitsariotis S, Vehling D, Al-Nawas B. Long-term oral Candida colonization, mucositis and salivary function after head and neck radiotherapy. Support Care Cancer. 2003;11:717–21.

    Google Scholar 

  21. Al-Nawas B, Grotz KA. Prospective study of the long term change of the oral flora after radiation therapy. Support Care Cancer. 2006;14:291–6.

    Article  PubMed  Google Scholar 

  22. Almståhl A, Wikström M, Fagerberg-Mohlin B. Microflora in oral ecosystems in subjects with radiation-induced hyposalivation. Oral Dis. 2008;14:541–9.

    Article  PubMed  Google Scholar 

  23. Hu YJ, Shao ZY, Wang Q, Jiang YT, Ma R, Tang ZS, Liu Z, Liang JP, Huang ZW. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing. PLoS One. 2013;8:e56343.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lundström IM, Lindström FD. Subjective and clinical oral symptoms in patients with primary Sjögren’s syndrome. Clin Exp Rheumatol. 1995;13:725–31.

    Google Scholar 

  25. Kolavic SA, Gibson G, Al-Hashimi I, Guo IY. The level of cariogenic micro-organisms in patients with Sjögren’s syndrome. Spec Care Dentist. 1997;17:65–9.

    Article  PubMed  Google Scholar 

  26. Leung WK, Jin LJ, Yam WC, Samaranayake LP. Oral colonization of aerobic and facultatively anaerobic gram-negative rods and cocci in irradiated, dentate, xerostomic individuals. Oral Microbiol Immunol. 2001;16:1–9.

    Article  PubMed  Google Scholar 

  27. Almståhl A, Wikström M, Kroneld U. Microflora in oral ecosystems in primary Sjögren’s syndrome. J Rheumatol. 2001;28:1007–13.

    PubMed  Google Scholar 

  28. Almståhl A, Kroneld U, Tarkowski A, Wikström M. Oral microbial flora in Sjögren’s syndrome. J Rheumatol. 1999;26:110–4.

    PubMed  Google Scholar 

  29. Leung KC, Leung WK, McMillan AS. Supra-gingival microbiota in Sjögren’s syndrome. Clin Oral Investig. 2007;11:415–23.

    Article  PubMed  Google Scholar 

  30. Almståhl A, Wikström M. Microflora in oral ecosystems in subjects with hyposalivation due to medicines or of unknown origin. Oral Health Prev Dent. 2005;3:67–76.

    PubMed  Google Scholar 

  31. Almståhl A, Wikström M. Oral microflora in subjects with reduced salivary secretion. J Dent Res. 1999;78:1410–6.

    Article  PubMed  Google Scholar 

  32. Eliasson L, Almståhl A, Lingstrom P, Wikström M, Carlen A. Minor gland saliva flow rate and proteins in subjects with hyposalivation due to Sjögren’s syndrome and radiation therapy. Arch Oral Biol. 2005;50:293–9.

    Article  PubMed  Google Scholar 

  33. Almståhl A, Kareem KL, Carlen A, Wardh I, Lingstrom P, Wikström M. A prospective study on oral microbial flora and related variables in dentate dependent elderly residents. Gerodontology. 2012;29:e1011–8.

    Article  PubMed  Google Scholar 

  34. Bergmans DC, Bonten MJ, Gaillard CA, Paling JC, van der Geest S, van Tiel FH, Beysens AJ, de Leeuw PW, Stobberingh EE. Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2001;164:382–8.

    Article  PubMed  Google Scholar 

  35. Scannapieco FA. Pneumonia in nonambulatory patients. The role of oral bacteria and oral hygiene. J Am Dent Assoc. 2006;137(Suppl):21S–5.

    Article  PubMed  Google Scholar 

  36. Scannapieco FA, Bush RB, Paju S. Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease. A systematic review. Ann Periodontol. 2003;8:54–69.

    Article  PubMed  Google Scholar 

  37. Scannapieco FA, Rethman MP. The relationship between periodontal diseases and respiratory diseases. Dent Today. 2003;22:79–83.

    PubMed  Google Scholar 

  38. Labeau SO, Van de Vyver K, Brusselaers N, Vogelaers D, Blot SI. Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancet Infect Dis. 2011;11:845–54.

    Article  PubMed  Google Scholar 

  39. Labeau SO, Blot SI. Toothbrushing for preventing ventilator-associated pneumonia. Crit Care. 2013;17:417.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149:279–94.

    Article  PubMed  Google Scholar 

  41. Marsh PD. Dental diseases–are these examples of ecological catastrophes? Int J Dent Hyg. 2006;4 Suppl 1:3–10.

    Article  PubMed  Google Scholar 

  42. Guggenheimer J, Moore PA. Xerostomia: etiology, recognition and treatment. J Am Dent Assoc. 2003;134:61–9.

    Article  PubMed  Google Scholar 

  43. Petersson GH, Twetman S, Bratthall D. Evaluation of a computer program for caries risk assessment in schoolchildren. Caries Res. 2002;36:327–40.

    Article  Google Scholar 

  44. Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21:297–309.

    Article  PubMed  Google Scholar 

  45. Pramanik R, Osailan SM, Challacombe SJ, Urquhart D, Proctor GB. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur J Oral Sci. 2010;118:245–53.

    Article  PubMed  Google Scholar 

  46. Edgar WM, Higham SM, Manning RH. Saliva stimulation and caries prevention. Adv Dent Res. 1994;8:239–45.

    PubMed  Google Scholar 

  47. Almståhl A, Wikström M. Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol. 2003;48:337–44.

    Article  PubMed  Google Scholar 

  48. Lingstrom P, Birkhed D. Plaque pH and oral retention after consumption of starchy snack products at normal and low salivary secretion rate. Acta Odontol Scand. 1993;51:379–88.

    Article  PubMed  Google Scholar 

  49. Johansson AK, Lingstrom P, Birkhed D. Effect of soft drinks on proximal plaque pH at normal and low salivary secretion rates. Acta Odontol Scand. 2007;65:352–6.

    Article  PubMed  Google Scholar 

  50. Watanabe S, Dawes C. The effects of different foods and concentrations of citric-acid on the flow-rate of whole saliva in man. Arch Oral Biol. 1988;33:1–5.

    Article  PubMed  Google Scholar 

  51. Rudney JD, Ji Z, Larson CJ. The prediction of saliva swallowing frequency in humans from estimates of salivary flow rate and the volume of saliva swallowed. Arch Oral Biol. 1995;40:507–12.

    Article  PubMed  Google Scholar 

  52. Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.

    Article  PubMed  Google Scholar 

  53. Ruxton CH, Gardner EJ, McNulty HM. Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit Rev Food Sci Nutr. 2010;50:1–19.

    Article  PubMed  Google Scholar 

  54. Tong HC, Gao XJ, Dong XZ. Non-mutans streptococci in patients receiving radiotherapy in the head and neck area. Caries Res. 2003;37:261–6.

    Article  PubMed  Google Scholar 

  55. Brunstrom JM. Effects of mouth dryness on drinking behavior and beverage acceptability. Physiol Behav. 2002;76:423–9.

    Article  PubMed  Google Scholar 

  56. Soto-Rojas AE, Kraus A. The oral side of Sjögren syndrome. Diagnosis and treatment. A review. Arch Med Res. 2002;33:95–106.

    Article  PubMed  Google Scholar 

  57. Hede B, Petersen PE. Self-assessment of dental health among Danish noninstitutionalized psychiatric patients. Spec Care Dentist. 1992;12:33–6.

    Article  PubMed  Google Scholar 

  58. Brand HS, Dun SN, Nieuw Amerongen AV. Ecstasy (MDMA) and oral health. Br Dent J. 2008;204:77–81.

    Article  PubMed  Google Scholar 

  59. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90:294–303.

    Article  PubMed  Google Scholar 

  60. Granath L, Cleaton-Jones P, Fatti LP, Grossman ES. Salivary lactobacilli explain dental caries better than salivary mutans streptococci in 4–5-year-old children. Scand J Dent Res. 1994;102:319–23.

    PubMed  Google Scholar 

  61. Zickert I, Emilson CG, Krasse B. Streptococcus mutans, lactobacilli and dental health in 13–14-year-old Swedish children. Community Dent Oral Epidemiol. 1982;10:77–81.

    Article  PubMed  Google Scholar 

  62. Kohler B, Bjarnason S. Mutans streptococci, lactobacilli and caries prevalence in 11- and 12-year-old Icelandic children. Community Dent Oral Epidemiol. 1987;15:332–5.

    Article  PubMed  Google Scholar 

  63. Shi S, Zhao Y, Hayashi Y, Yakushiji M, Machida Y. A study of the relationship between caries activity and the status of dental caries: application of the Dentocult LB method. Chin J Dent Res. 1999;2:34–7.

    PubMed  Google Scholar 

  64. Eliasson L, Carlen A, Almståhl A, Wikström M, Lingstrom P. Dental plaque pH and micro-organisms during hyposalivation. J Dent Res. 2006;85:334–8.

    Article  PubMed  Google Scholar 

  65. Almståhl A, Carlen A, Eliasson L, Lingstrom P. Lactobacillus species in supragingival plaque in subjects with hyposalivation. Arch Oral Biol. 2010;55:255–9.

    Google Scholar 

  66. Stamatova I, Meurman JH. Probiotics: health benefits in the mouth. Am J Dent. 2009;22:329–38.

    PubMed  Google Scholar 

  67. Twetman S. Are we ready for caries prevention through bacteriotherapy? Braz Oral Res. 2012;26 Suppl 1:64–70.

    Article  PubMed  Google Scholar 

  68. Bernardeau M, Vernoux JP. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin Microbiol Infect. 2013;19:321–30.

    Article  PubMed  Google Scholar 

  69. Petersson LG, Magnusson K, Hakestam U, Baigi A, Twetman S. Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontol Scand. 2011;69:321–7.

    Article  PubMed  Google Scholar 

  70. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J. 2006;30:55–60.

    Google Scholar 

  71. Bosch M, Nart J, Audivert S, Bonachera MA, Alemany AS, Fuentes MC, Cune J. Isolation and characterization of probiotic strains for improving oral health. Arch Oral Biol. 2012;57:539–49.

    Article  PubMed  Google Scholar 

  72. Almståhl A, Lingstrom P, Eliasson L, Carlen A. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains. Clin Oral Investig. 2013;17:1465–70.

    Google Scholar 

  73. Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.

    Article  PubMed  Google Scholar 

  74. Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J of Oral Microbiol. 2011;3: 5771 DOI: 10.3402/jom.v3i0.5771.

  75. Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA. Candida biofilms and oral candidosis: treatment and prevention. Periodontol 2000. 2011;55:250–65.

    Google Scholar 

  76. den Hertog AL, van Marle J, van Veen HA, van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J. 2005;388:689–95.

    Article  Google Scholar 

  77. Leito JT, Ligtenberg AJ, Nazmi K, Veerman EC. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans. FEMS Yeast Res. 2009;9:1102–10.

    Article  PubMed  Google Scholar 

  78. Guobis Z, Kareiviene V, Baseviciene N, Paipaliene P, Niedzelskiene I, Sabalys G, Kubilius R, Gervickas A. Microflora of the oral cavity in patients with xerostomia. Medicina (Kaunas). 2011;47:646–51.

    Google Scholar 

  79. Redding SW. The role of yeasts other than Candida albicans in oropharyngeal candidiasis. Curr Opin Infect Dis. 2001;14:673–7.

    Google Scholar 

  80. Redding SW, Dahiya MC, Kirkpatrick WR, Coco BJ, Patterson TF, Fothergill AW, Rinaldi MG, Thomas Jr CR. Candida glabrata is an emerging cause of oropharyngeal candidiasis in patients receiving radiation for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:47–52.

    Google Scholar 

  81. Antoniazzi RP, Miranda LA, Zanatta FB, Islabao AG, Gustafsson A, Chiapinotto GA, Oppermann RV. Periodontal conditions of individuals with Sjögren’s syndrome. J Periodontol. 2009;80:429–35.

    Article  PubMed  Google Scholar 

  82. Rhodus NL, Michalowicz BS. Periodontal status and sulcular Candida albicans colonization in patients with primary Sjögren’s Syndrome. Quintessence Int. 2005;36:228–33.

    PubMed  Google Scholar 

  83. Hahnel S, Behr M, Handel G, Burgers R. Saliva substitutes for the treatment of radiation-induced xerostomia–a review. Support Care Cancer. 2009;17:1331–43.

    Article  PubMed  Google Scholar 

  84. van der Hoeven JS, Camp PJM. Synergistic degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res. 1991;70:1041–4.

    Google Scholar 

  85. Wong L, Sissons CH. Human dental plaque microcosm biofilms: effect of nutrient variation on calcium phosphate deposition and growth. Arch Oral Biol. 2007;52:280–9.

    Article  PubMed  Google Scholar 

  86. Weerkamp AH, Wagner K, Vissink A, Gravenmade EJ. Effect of the application of a mucin-based saliva substitute on the oral microflora of xerostomic patients. J Oral Pathol. 1987;16:474–8.

    Article  PubMed  Google Scholar 

  87. Wolinsky LE, Seto B, Cerveny R. Effect of saliva substitutes upon binding of selected oral bacteria to hydroxyapatite. Caries Res. 1985;19:507–11.

    Article  PubMed  Google Scholar 

  88. Sugiura Y, Soga Y, Tanimoto I, Kokeguchi S, Nishide S, Kono K, Takahashi K, Fujii N, Ishimaru F, Tanimoto M, Yamabe K, Tsutani S, Nishimura F, Takashiba S. Antimicrobial effects of the saliva substitute, Oralbalance, against microorganisms from oral mucosa in the hematopoietic cell transplantation period. Support Care Cancer. 2008;16:421–4.

    Google Scholar 

  89. Kirstila V, Lenander-Lumikari M, Soderling E, Tenovuo J. Effects of oral hygiene products containing lactoperoxidase, lysozyme, and lactoferrin on the composition of whole saliva and on subjective oral symptoms in patients with xerostomia. Acta odontol Scan. 1999;54:391–7.

    Article  Google Scholar 

  90. Epstein JB, Stevenson-Moore P. A clinical comparative trial of saliva substitutes in radiation-induced salivary gland hypofunction. Spec Care Dentist. 1992;12:21–3.

    Article  PubMed  Google Scholar 

  91. Gil-Montoya JA, Guardia-Lopez I, Gonzalez-Moles MA. Evaluation of the clinical efficacy of a mouthwash and oral gel containing the antimicrobial proteins lactoperoxidase, lysozyme and lactoferrin in elderly patients with dry mouth–a pilot study. Gerodontology. 2008;25:3–9.

    Article  PubMed  Google Scholar 

  92. Sugiura Y, Soga Y, Yamabe K, Tsutani S, Tanimoto I, Maeda H, Kokeguchi S, Fujii N, Ishimaru F, Tanimoto M, Nishimura F, Takashiba S. Total bacterial counts on oral mucosa after using a commercial saliva substitute in patients undergoing hematopoietic cell transplantation. Support Care Cancer. 2010;18:395–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoon J. M. Ligtenberg PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ligtenberg, A.J.M., Almståhl, A. (2015). Xerostomia and the Oral Microflora. In: Carpenter, G. (eds) Dry Mouth. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55154-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55154-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55153-6

  • Online ISBN: 978-3-642-55154-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics