Skip to main content

Ecological Genomics of Pseudomonas syringae

  • Chapter
  • First Online:
Genomics of Plant-Associated Bacteria

Abstract

Pseudomonas syringae is well known as a model bacterial phytopathogen in the laboratory, environment, and the field. A focus on understanding mechanisms of virulence in planta has motivated extensive research into genetic, genomic, and evolutionary factors that influence disease. However, in recent years, appreciation has grown for the life cycle of P. syringae outside of the context of plant disease. This bacterial species survives and thrives across many environments, with its broad ecology shaped through interactions with phage, bacteria, fungi, and insects in addition to traditional host plants. Here we explore what is known about the genetic and genomic basis of these diverse ecological interactions. We highlight how both new and old approaches can be used to unify our understanding of these relationships and map a path forward enabled by high-throughput genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Chaidez FJ, Peñaloza-Vázquez A, Ullrich M, Bender CL (1999) Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae. Plasmid 42:210–220

    PubMed  Google Scholar 

  • Almeida NF, Yan S, Cai R, Clarke CR, Morris CE, Schaad NW et al (2010) PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology 100:208–215

    CAS  PubMed  Google Scholar 

  • Araki H, Tian D, Goss EM, Jakob K, Halldorsdottir SS, Kreitman M, Bergelson J (2006) Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proc Natl Acad Sci USA 103:5887–5892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A (2001) Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi. Microbiology 147:1171–1182

    CAS  PubMed  Google Scholar 

  • Arnold DL, Lovell HC, Jackson RW, Mansfield JW (2011) Pseudomonas syringae pv. phaseolicola: from “has bean” to supermodel. Mol Plant Pathol 12:617–622

    PubMed  Google Scholar 

  • Badel JL, Shimizu R, Oh HS, Collmer A (2006) A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant Microbe Interact 19: 99–111

    Google Scholar 

  • Baltrus DA, Nishimura MT, Dougherty KM, Biswas S, Muhktar S, Vicente JG et al (2012) The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 25:877–888

    CAS  PubMed  Google Scholar 

  • Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K et al (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 7:e1002132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barreteau H, Bouhss A, Fourgeaud M, Mainardi JL, Touze T, Gerard F et al (2009) Human- and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors. J Bacteriol 191:3657–3664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr Opin Microbiol 14:39–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bodilis J, Ghysels B, Osayande J, Matthijs S, Pirnay J-P, Denayer S et al (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135

    PubMed  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237

    CAS  PubMed  Google Scholar 

  • Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Pr Proc Natl Acad Sci USA 100:10181–10186

    CAS  Google Scholar 

  • Bultreys A, Gheysen I (2000) Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl Environ Microbiol 66:325–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bultreys A, Gheysen I, Maraite H, de Hoffmann E (2001) Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl Environ Microbiol 67:1718–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bultreys A, Gheysen I, Wathelet B, Maraite H, de Hoffmann E (2003) High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species. Appl Environ Microbiol 69:1143–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burch AY, Shimada BK, Mullin SWA, Dunlap CA, Bowman MJ, Lindow SE (2012) Pseudomonas syringae coordinates production of a motility-enabling surfactant with flagellar assembly. J Bacteriol 194:1287–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F et al (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carrion VJ, Gutierrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A et al (2013) The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution. Appl Environ Microbiol 79:756–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chien C-F, Mathieu J, Hsu C-H, Boyle P, Martin GB, Lin N-C (2013) Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a Is due to a defective E3 ubiquitin ligase domain in AvrPtoB B728a. Mol Plant Microbe Interact 26:387–397

    CAS  PubMed  Google Scholar 

  • Clarke CR, Cai R, Studholme DJ, Guttman DS, Vinatzer BA (2010) Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 23:198–210

    CAS  PubMed  Google Scholar 

  • Cody YS, Gross DC (1987) Outer membrane protein mediating iron uptake via pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. J Bacteriol 169:2207–2214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Reports 1:256–262

    CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    CAS  PubMed  Google Scholar 

  • Cornelis P, Hohnadel D, Meyer JM (1989) Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 57:3491–3497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A (2011) Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci USA 108:2975–2980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies JK, Reeves P (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denayer S, Matthijs S, Cornelis P (2007) Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I Ferripyoverdine receptor. J Bacteriol 189:7663–7668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diallo MD, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez CEC, Morris CE (2012a) Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME J 6:1–11

    Google Scholar 

  • Diallo MD, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez CEC, Morris CE (2012b) Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME J 6:1325–1335

    CAS  PubMed Central  Google Scholar 

  • Expert D, Toussaint A (1985) Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol 163:221–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185–1188

    CAS  PubMed  Google Scholar 

  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A et al (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 102:11064–11069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrante P, Clarke CR, Cavanaugh KA, Michelmore RW, Buonaurio R, Vinatzer BA (2009) Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P.syringae pv. tabaci. Mol Plant Pathol 10:837–842

    CAS  PubMed  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M, Grills G et al (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192:2359–2372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Myers CR, Bronstein PA, Butcher BG, Lam H et al (2011) Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One 6:e29335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fones H, Davis CAR, Rico A, Fang F, Smith JAC, Preston GM (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6:e1001093

    PubMed Central  PubMed  Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PA (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478

    CAS  PubMed  Google Scholar 

  • Garrett CM, Crosse JE (1963) Observations on lysogeny in the plant pathogens Pseudomonas morsprunorum and P. syringae. J Appl Microbiol 26:27–34

    Google Scholar 

  • Garrett CM, Panagopoulos CG, Crosse JE (1966) Comparison of plant pathogenic pseudomonads from fruit trees. J Appl Microbiol 29:342–356

    Google Scholar 

  • Geng X, Cheng J, Gangadharan A, Mackey D (2012) The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24:4763–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghequire MGK, Li W, Proost P, Loris R, De Mot R (2012) Plant lectin-like antibacterial proteins from phytopathogens Pseudomonas syringae and Xanthomonas citri. Environ Microbiol Reports 4:373–380

    CAS  Google Scholar 

  • Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D et al (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 5:e10224

    PubMed Central  PubMed  Google Scholar 

  • Grinter R, Milner J, Walker D (2012) Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans 40:1498–1502

    CAS  PubMed  Google Scholar 

  • Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK et al (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755–758

    CAS  PubMed  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    CAS  PubMed  Google Scholar 

  • Haapalainen M, Mosorin H, Dorati F, Wu RF, Roine E, Taira S et al (2012) Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for competitive fitness against bacteria and yeasts. J Bacteriol 194:4810–4822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison PW, Lower RPJ, Kim NKD, Young JPW (2010) Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends Microbiol 18:141–148

    CAS  PubMed  Google Scholar 

  • Hattermann DR, Ries SM (1989) Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289

    Google Scholar 

  • Hirano S, Upper C (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hockett KL, Burch AY, Lindow SE (2013) Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS One 8:e59850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtsmark I, Eijsink VGH, Brurberg MB (2008) Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 280:1–7

    CAS  PubMed  Google Scholar 

  • Hwang MSH, Morgan RL, Sarkar SF, Wang PW, Guttman DS (2005) Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 71:5182–5191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J (2011) The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements 1:55–65

    PubMed Central  PubMed  Google Scholar 

  • Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM et al (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AM, Wildermuth MC (2011) The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 193:2767–2775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    CAS  PubMed  Google Scholar 

  • Jülich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Z Naturforsch C 56:687–694

    PubMed  Google Scholar 

  • Karamanoli K, Bouligaraki P, Constantinidou HIA, Lindow SE (2011) Polyphenolic compounds on leaves limit iron availability and affect growth of epiphytic bacteria. Ann Appl Biol 159:99–108

    CAS  Google Scholar 

  • Kim JJ, Sundin GW (2000) Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 Nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. J Bacteriol 182:6137–6144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kniskern JM, Barrett LG, Bergelson J (2010) Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. Evolution 65:818–830

    PubMed Central  PubMed  Google Scholar 

  • Koskella B, Thompson JN, Preston GM, Buckling A (2011) Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat 177:440–451

    PubMed  Google Scholar 

  • Kvitko BH, Park DH, Velásquez AC, Wei C-F, Russell AB, Martin GB et al (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 Type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5:e1000388

    PubMed Central  PubMed  Google Scholar 

  • Lacombe SEV, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP et al (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    CAS  PubMed  Google Scholar 

  • Laue H (2006) Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152:2909–2918

    CAS  PubMed  Google Scholar 

  • Lavermicocca P, Lonigro SL, Evidente A, Andolfi A (1999) Bacteriocin production by Pseudomonas syringae pv. ciccaronei NCPPB2355. Isolation and partial characterization of the antimicrobial compound. J Appl Microbiol 86:257–265

    CAS  Google Scholar 

  • Lavermicocca P, Lonigro SL, Valerio F, Evidente A, Visconti A (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol 68:1403–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin N-C, Martin GB (2005) An avrpto/avrptoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe Interact 18:43–51

    CAS  PubMed  Google Scholar 

  • Lin N-C, Martin GB (2007) Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathovars to infect tomato. Mol Plant Microbe Interact 20:806–815

    CAS  PubMed  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208

    CAS  PubMed  Google Scholar 

  • Lindeberg M, Myers CR, Collmer A, Schneider DJ (2008) Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21:685–700

    CAS  PubMed  Google Scholar 

  • Lindow SE, Andersen G, Beattie GA (1993) Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic fitness. Appl Environ Microbiol 59:1593–1601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell HC, Mansfield JW, Godfrey SAC, Jackson RW, Hancock JT, Arnold DL (2009) Bacterial evolution by genomic island transfer occurs via DNA transformation In Planta. Curr Biol 19:1586–1590

    CAS  PubMed  Google Scholar 

  • Ma Z, Smith JJ, Zhao Y, Jackson RW, Arnold DL, Murillo J, Sundin GW (2007) Phylogenetic analysis of the pPT23A plasmid family of Pseudomonas syringae. Appl Environ Microbiol 73:1287–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M (2011) Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One 6:e27297

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCann HC, Nahal H, Thakur S, Guttman DS (2012) Identification of innate immunity elicitors using molecular signatures of natural selection. Proc Natl Acad Sci USA 109:4215–4220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer J-M (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    CAS  PubMed  Google Scholar 

  • Minor SM, Nordeen RO, Pachall R (1996) Partial characterization of bacteriophages of Pseudomonas syringae pv. tomato. Proc Ark Acad Sci 50:137–140

    Google Scholar 

  • Mohr TJ, Liu H, Yan S, Morris CE, Castillo JA, Jelenska J, Vinatzer BA (2008) Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190:2858–2870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C (2010) Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio 1: e00107-10-e00107-20

    Google Scholar 

  • Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A et al (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334

    CAS  PubMed  Google Scholar 

  • Nadarasah G, Stavrinides J (2011) Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev 35:555–575

    CAS  PubMed  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordeen RO, Morgan MK, Currier TC (1983) Isolation and partial characterization of bacteriophages of the phytopathogen Pseudomonas syringae. Appl Environ Microbiol 45:1890–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oguiza JA, Kiil K, Ussery DW (2005) Extracytoplasmic function sigma factors in Pseudomonas syringae. Trends Microbiol 13:565–568

    CAS  PubMed  Google Scholar 

  • Owen JG, Ackerley DF (2011) Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 11:218

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien HE, Thakur S, Guttman DS (2011) Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Ann Rev Phytopathol 49:269–289

    Google Scholar 

  • O’Brien HE, Thakur S, Gong Y, Fung P, Zhang J, Yuan L et al (2012) Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol 12:141

    PubMed Central  PubMed  Google Scholar 

  • Panopoulos NJ, Schroth MN (1974) Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64:1389–1397

    Google Scholar 

  • Parret AHA, De Mot R (2002) Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma-proteobacteria. Trends Microbiol 10:107–112

    CAS  PubMed  Google Scholar 

  • Preston GM (2000) Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol 1:263–275

    CAS  PubMed  Google Scholar 

  • Prior ES, Andrews JA, Nordeen OR (2007) Characterization of bacteriophages of Pseudomonas syringae pv. tomato. Proc Ark Acad Sci 61:84–90

    Google Scholar 

  • Quigley NB, Gross DC (1994) Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol Plant Microbe Interact 7:78–90

    CAS  PubMed  Google Scholar 

  • Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    PubMed  Google Scholar 

  • Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J (2012) Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol Plant Pathol 13:998–1009

    CAS  PubMed  Google Scholar 

  • Records AR, Gross DC (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 192:3584–3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rico A, Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact 21:269–282

    CAS  PubMed  Google Scholar 

  • Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada JM, Biehl BS, Perna NT, Glasner JD, Cabot EL, Neeno-Eckwall E, Ramos C (2010) Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 12:1–17

    Google Scholar 

  • Sarris PF, Skandalis N, Kokkinidis M, Panopoulos NJ (2010) In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol 11:795–804

    CAS  PubMed  Google Scholar 

  • Sarris PF, Trantas EA, Baltrus DA, Bull CT, Wechter WP, Yan S et al (2013) Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 8:e59366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato M (1983) Phage-induction from lysogenic strains of Pseudomonas syringae pv. mori by the extract from mulberry leaves. Ann Phytopathol Soc Japan 49:259–261

    Google Scholar 

  • Schellenberg B, Ramel C, Dudler R (2010) Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol Plant Microbe Interact 23:1287–1293

    CAS  PubMed  Google Scholar 

  • Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC (2001) The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol Plant Microbe Interact 14:336–348

    CAS  PubMed  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    CAS  PubMed  Google Scholar 

  • Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G (2012) Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Mol Plant Pathol 13:631–640

    PubMed  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    CAS  PubMed  Google Scholar 

  • Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187:2138–2147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer DH, Kas A, Smith EE, Raymond CK, Sims EH, Hastings M et al (2003) Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185:1316–1325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230–2235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Studholme DJ (2011) Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. Mol Plant Pathol 12:829–838

    CAS  PubMed  Google Scholar 

  • Sundin GW (2007) Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Ann Rev Phytopathol 45:129–151

    CAS  Google Scholar 

  • Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Panagiotis FS, Charova SN et al (2010) Playing the “Harp”: evolution of our understanding of hrp/hrc genes. Ann Rev Phytopathol 48:347–370

    CAS  Google Scholar 

  • Taylor J, Teverson D, Allen D (1996) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Google Scholar 

  • Thakur PB, Vaughn-Diaz VL, Greenwald JW, Gross DC (2013) Characterization of five ECF sigma factors in the genome of Pseudomonas syringae pv. syringae B728a. PLoS ONE 8:e58846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomma BPHJ, Nurnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    CAS  PubMed  Google Scholar 

  • Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA, Schmidt CL et al (2012) Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol 196:1197–1207

    CAS  PubMed  Google Scholar 

  • Vidaver AK, Mathys ML, Thomas ME, Schuster ML (1972) Bacteriocins of the phytopathogens Pseudomonas syringae, P. glycinea, and P. phaseolicola. Can J Microbiol 18(6):705–713

    CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    CAS  PubMed  Google Scholar 

  • Vivian A, Murillo J, Jackson RW (2001) The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147:763–780

    CAS  PubMed  Google Scholar 

  • Wei C-F, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin N-C et al (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46

    CAS  PubMed  Google Scholar 

  • Wensing A, Braun SD, Buttner P, Expert D, Völksch B, Ullrich MS, Weingart H (2010) Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 76:2704–2711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wichmann G, Sun J, Dementhon K, Glass NL, Lindow SE (2008) A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol Microbiol 68:672–689

    CAS  PubMed  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60:4468–4477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wroblewski T, Caldwell KS, Piskurewicz U, Cavanaugh KA, Xu H, Kozik A et al (2009) Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol 150:1733–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JM (2010) Taxonomy of Pseudomonas syringae. J. Plant Pathol 92(1): S1-5–14

    Google Scholar 

  • Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D et al (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA 110:E425–E434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Sundin GW (2004) Long-term effect of mutagenic DNA repair on accumulation of mutations in Pseudomonas syringae B86-17. J Bacteriol 186:7807–7810

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Baltrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baltrus, D.A., Hendry, T.A., Hockett, K.L. (2014). Ecological Genomics of Pseudomonas syringae . In: Gross, D., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55378-3_3

Download citation

Publish with us

Policies and ethics