Skip to main content

Numerical Stability of Collocation Schemes for Time Domain Boundary Integral Equations

  • Conference paper
Computational Electromagnetics

Summary

Time domain boundary integral formulations of transient scattering problems involve retarded potential integral equations (RPIEs). Collocation schemes for RPIEs are often unstable, having errors which oscillate and grow exponentially with time. We describe how Fourier analysis can be used to analyse the stability of uniform grid schemes and to show that the instabilities are often very different from those observed in PDE approximations. We also present a new stable collocation scheme for a scalar RPIE, and show that it converges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bachelot and A. Pujols. Time dependent integral equations for the Maxwell system. C. R. Acad. Sci. Paris Ser. I Math., 314:639–644, 1992.

    MathSciNet  MATH  Google Scholar 

  2. A. Bamberger and T. Ha Duong. Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique (i). Math. Meth. Appl. Sci., 8:405–435, 1986.

    Article  MATH  Google Scholar 

  3. S. Bartels. Numerical analysis of retarded potential integral equations of electromagnetism, 1998. M.Sc. Thesis, Heriot-Watt University.

    Google Scholar 

  4. J. H. Bramble and S. R. Hilbert. Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal., 7:112–124, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. J. Davies. Numerical stability and convergence of approximations of retarded potential integral equations. SIAM J. Numer. Anal., 31:856–875, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. J. Davies. Stability of time-marching numerical schemes for the electric field integral equation. J. Electromag. Waves & Appl, 8:85–114, 1994.

    Article  Google Scholar 

  7. P. J. Davies. A stability analysis of a time marching scheme for the general surface electric field integral equation. Applied Numerical Mathematics, 27:33–57, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Davies and D. B. Duncan. Averaging techniques for time marching schemes for retarded potential integral equations. Applied Numerical Mathematics, 23:291–310, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. J. Davies and D. B. Duncan. Stability and convergence of collocation schemes for retarded potential integral equations. In preparation.

    Google Scholar 

  10. A. A. Ergin, B. Shanker, and E. Michielssen. The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena. IEEE Ant. Prop. Magazine, 41(4):39–52, 1999.

    Article  Google Scholar 

  11. A. A. Ergin, B. Shanker, and E. Michielssen. Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm. J. Acoust. Soc. Am., 107(3):1168–1178, 2000.

    Article  Google Scholar 

  12. C. J. Gladwin and R. Jeltsch. Stability of quadrature rule methods for first kind Volterra integral equations. BIT, 14:144–151, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Ha Duong. On the transient acoustic scattering by a flat object. Japan J. Appl. Math., 7:489–513, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Ha-Duong. On boundary integral equations associated to scattering problems of transient waves. Z. Angew. Math. Mech., 76(suppl. 2):261–264, 1996.

    MATH  Google Scholar 

  15. D. S. Jones. Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford, second edition, 1994.

    Book  Google Scholar 

  16. J. G. Jones. On the numerical solution of convolution integral equations and systems of such equations. Math. Comp., 15:131–142, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Linz. Analytical and Numerical Methods for Volterra Equations. SIAM, 1985.

    Google Scholar 

  18. M. Lu, J. Wang, A. A. Ergin, and E. Michielssen. Fast evaluation of twodimensional transient wave fields. J. Comp. Phys., 158:161–185, 2000.

    Article  MATH  Google Scholar 

  19. Ch. Lubich. On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numerische Mathematik, 67:365–389, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Pujols. Time-dependent integral method for Maxwell equations. In G. Cohen, L. Halpern, and P. Joly, editors, Mathematical and Numerical Aspects of Wave Propagation Phenomena, pages 118–126. SIAM, 1991.

    Google Scholar 

  21. S. M. Rao and D. R. Wilton. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Ant. Prop., 39:56–61, 1991.

    Article  Google Scholar 

  22. S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Ant. Prop., 30:409–418, 1982.

    Article  Google Scholar 

  23. B. P. Rynne. Instabilities in time marching methods for scattering problems. Electromagnetics, 6:129–144, 1986.

    Article  Google Scholar 

  24. B. P. Rynne. Time domain scattering from arbitrary surfaces using the electric field equation. J. Electromag. Waves & Appl, 5:93–112, 1991.

    Google Scholar 

  25. B. P. Rynne. The well-posedness of the electric field integral equation for transient scattering from a perfectly conducting body. Math. Meth. Appl. Sci., 22:619–631, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. P. Rynne and P. D. Smith. Stability of time marching algorithms for the electric field equation. J. Electromag. Waves & Appl, 4:1181–1205, 1990.

    Article  Google Scholar 

  27. V. Thomée. Convergence estimates for semi-discrete Galerkin methods for initial-value problems. In A. Dold and B. Eckmann, editors, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Lecture Notes in Mathematics, 333), pages 243–262. Springer-Verlag, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, P., Duncan, D. (2003). Numerical Stability of Collocation Schemes for Time Domain Boundary Integral Equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics