Skip to main content

Chromatin Proteins Are Determinants of Centromere Function

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochoremicrotubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere- defining chromatin domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–1938

    PubMed  CAS  Google Scholar 

  • Abad JP, Villasante A (2000) Searching for a common centromeric structural motif: Drosophila centromeric satellite DNAs show propensity to form telomeric-like unusual DNAstructures. Genetica 109:71–75

    PubMed  CAS  Google Scholar 

  • Allshire RC, Javerzat JP, Redhead NJ, Cranston G (1994) Position effect variegation at fission yeast centromeres. Cell 76:157–169

    PubMed  CAS  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233

    PubMed  CAS  Google Scholar 

  • Angus-Hill ML, Schlichter A, Roberts D, Erdjument-Bromage H, Tempst P, Cairns BR (2001) A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSCin gene expression and cell cycle control. Mol Cell 7:741–751

    PubMed  CAS  Google Scholar 

  • Baker RE, Fitzgerald-Hayes M, O’brien TC (1989) Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J Biol Chern 264:10843–10850

    CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HPI chromo domain. Nature 410:120–124

    PubMed  CAS  Google Scholar 

  • Baum M, Ngan VK, Clarke L (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol BioI Cell 5:747–761

    CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2359–2342

    Google Scholar 

  • Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259

    PubMed  CAS  Google Scholar 

  • Bloom KS, Carbon J (1982) Yeastcentromere DNAis in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317

    PubMed  CAS  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739

    PubMed  CAS  Google Scholar 

  • Bram RJ, Kornberg RD (1987) Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell BioI 7:403–409

    CAS  Google Scholar 

  • Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR, Broadhurst RW, Ball LJ, Murzina NV, Laue ED (2000) The structure of mouse HPI suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19:1587–1597

    PubMed  CAS  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff SA (1999) A histone-H3like protein in C. elegans. Nature 401:547–548

    PubMed  CAS  Google Scholar 

  • Cai M, Davis RW (1990) Yeast centromere binding protein CBF1, of the helix-loophelix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446

    PubMed  CAS  Google Scholar 

  • Cai MJ, Davis RW (1989) Purification of a yeast centromere-binding protein that is able to distinguish single base-pair mutations in its recognition site. Mol Cell Biol 9:2544–2550

    PubMed  CAS  Google Scholar 

  • Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD (1996) RSC, an essential, abundant chromatinremodeling complex. Cell 87:1249–1260

    PubMed  CAS  Google Scholar 

  • Camerini-Otero R, Sollner-Webb B, Felsenfeld G (1976) The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel. Cell 8:333–347

    PubMed  CAS  Google Scholar 

  • Cao Y, Cairns BR, Kornberg RD, Laurent BC (1997) Sfhl P. a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell BioI 17:3323–3334

    CAS  Google Scholar 

  • Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell BioI In press

    Google Scholar 

  • Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20:7037–7048

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57:739–751

    PubMed  CAS  Google Scholar 

  • Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    PubMed  CAS  Google Scholar 

  • Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10:1863–1872

    PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509

    PubMed  CAS  Google Scholar 

  • Cohen-Fix O (2001) The making and breaking of sister chromatid cohesion. Cell 106: 137–140

    PubMed  CAS  Google Scholar 

  • Connelly C, Hieter P (1996) Budding yeast SKPI encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86:275–285

    PubMed  CAS  Google Scholar 

  • Cumberledge S, Carbon J (1987) Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212

    PubMed  CAS  Google Scholar 

  • Czermin B, Schotta G, Hulsmann BB, Brehm A, Becker PB, Reuter G, Imhof A (2001) Physical and functional association of SU(VAR)3-9 and HDACI in Drosophila. EMBO Rep 2:915–919

    PubMed  CAS  Google Scholar 

  • Doe CL, Wang G, Chow C, Fricker MD, Singh PB, Mellor EJ (1998) The fission yeast chromo domain encoding gene chp 1(+) is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res 26: 4222–4229

    PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    PubMed  CAS  Google Scholar 

  • Du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321

    PubMed  CAS  Google Scholar 

  • Eissenberg JC (2001) Molecular biology of the chromo domain: an ancient chromatin module comes of age. Genes Cells 275:19–29

    CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, James IC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatinassociated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131:345–352

    PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R, Cranston G, Allshire R (1996) Mutations in the fission yeast silencing factors clr4+ and rik l + disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109:2637–3648

    PubMed  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032

    PubMed  CAS  Google Scholar 

  • Ellison MJ, Pulleyblank DE (1983) Internal structure of discrete nucleohistone complexes which form in vitro under conditions of physiological ionic strength. J BioI Chern 258:13314–13320

    CAS  Google Scholar 

  • Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the reestablishment, of silencing at the yeast silent mating loci. Genes Dev 12:219–232

    PubMed  CAS  Google Scholar 

  • Enomoto S, Mccune-Zierath PD, Gerami-Nejad M, Sanders M, Berman J (1997) RLF2, a subunit of yeast chromatin assembly factor I, is required for telomeric chromatin function in vivo. Genes Dev 11:358–370

    PubMed  CAS  Google Scholar 

  • Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244

    PubMed  CAS  Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1987) Alterations in the adenine-plus-thyminerich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol Cell BioI 7:68–75

    CAS  Google Scholar 

  • Gavin A-C et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    PubMed  CAS  Google Scholar 

  • Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57

    PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Carbon J, Clarke L (1991) Identification of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I. Mol Cell Biol 11:2206–2215

    PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    PubMed  CAS  Google Scholar 

  • Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323

    PubMed  CAS  Google Scholar 

  • Hegemann JH, Fleig UN (1993) The centromere of budding yeast. Bioessays 15: 451–460

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Platero JS, Van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721

    PubMed  CAS  Google Scholar 

  • Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921

    PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, Mcgill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat BiotechnoI 16:431–439

    CAS  Google Scholar 

  • Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJ (1998) The chromo and SETdomains of the Clr4 protein are essential for silencing in fission yeast. Nat Genet 19:192–195

    PubMed  CAS  Google Scholar 

  • Jackson V (1988) Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry 27:2109–2120

    PubMed  CAS  Google Scholar 

  • Jackson V (1990) in vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–731

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HPI chromo domain for the methylated N-terminus of histone H3. EMBO J 20:5232–5241

    PubMed  CAS  Google Scholar 

  • Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B, Lengauer C (2001) Securin is required for chromosomal stability in human cells. Cell 105:445–457

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • Jiang WD, Philippsen P (1989) Purification of a protein binding to the CDEI subregion of Saccharomyces cerevisiae centromereDNA. Mol Cell Biol 9:5585–5593

    PubMed  CAS  Google Scholar 

  • Kalitsis P, Macdonald AC, Newson AI, Hudson DF, Choo KH (1998) Gene structure and sequence analysis of mouse centromere proteins A and C. Genomics 47: 108–114

    PubMed  CAS  Google Scholar 

  • Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT (1996) Postreplicative chromatin assembly by Drosophila and human Chromatin Assembly Factor-I. Mol Cell BioI 16:810–817

    CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Cohen JL, Osley MA (1998) Hir proteins are required for positiondependent gene silencing in Saccharomyces cerevisiae in the absence of Chromatin Assembly Factor I. Mol Cell Biol 18:4793–4806

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor 1: a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiaecell lacking chromatin assembly factor-I. Genes Dev 11:345–357

    PubMed  CAS  Google Scholar 

  • Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-l in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142

    PubMed  CAS  Google Scholar 

  • Keith KC, Baker RE, Chen Y, Harris K, Stoler S, Fitzgerald-Hayes M (1999) Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 19:6130–6139

    PubMed  CAS  Google Scholar 

  • Keith KC, Fitzgerald-Hayes M (2000) CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere DNA around a Cse4p variant nucleosome. Genetics 156:973–981

    PubMed  CAS  Google Scholar 

  • Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophilaembryos. J Cell Sci 108:1419–1431

    PubMed  CAS  Google Scholar 

  • Krude T (1995) Chromatin assembly factor 1 (CAF-l) colocalizes with replication foci in HeLa cell nuclei. Exp. Cell Res 220:304–311

    PubMed  CAS  Google Scholar 

  • Laloraya S, Guacci V, Koshland D (2000) Chromosomal addresses of the cohesin component Mcdlp, J Cell Biol 151:1047–1056

    PubMed  CAS  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae.Yeast 13:1029–1042

    PubMed  CAS  Google Scholar 

  • Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3,is a major component of the budding yeast centromere. Cell 64:717–725

    PubMed  CAS  Google Scholar 

  • Lorch Y, Zhang M, Kornberg RD (1999) Histone octamer transfer by a chromatinremodeling complex. Cell 96:389–392

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TI (1997) Crystal structure of the nucleosome core particle at 2.8 resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  • Mcgrew J, Diehl B, Fitzgerald-Hayes M (1986) Single base-pair mutations in cen tromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6:530–538

    PubMed  CAS  Google Scholar 

  • Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P (2002) Ctfsp, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16:101–113

    PubMed  CAS  Google Scholar 

  • Megee PC, Mistrot C, Guacci V, Koshland D (1999) The centromeric sister chromatid cohesion site directs Mcdlp binding to adjacent sequences. Mol Cell 4:445–450

    PubMed  CAS  Google Scholar 

  • Meijsing SH, Ehrenhofer-Murray AE (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and AsfI in Saccharomyces cerevisiae. Genes Dev 15:3169–3182

    PubMed  CAS  Google Scholar 

  • Meluh PB, Koshland D (1997) Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev 11:3401–3412

    PubMed  CAS  Google Scholar 

  • Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613

    PubMed  CAS  Google Scholar 

  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    PubMed  CAS  Google Scholar 

  • Miller JR, Hindkjaer J, Thomsen PD (1993) A chromosomal basis for the differential organization of a porcine centromere-specific repeat. Cytogenet. Cell Genet 62: 37–41

    CAS  Google Scholar 

  • Monson EK, De Bruin D, Zakian VA (1997) The yeast Cacl protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci USA 94:13081–13086

    PubMed  CAS  Google Scholar 

  • Murakami S, Matsumoto T, Niwa O, Yanagida M (1991) Structure of the fission yeast centromere cen3: direct analysis of the reiterated inverted region. Chromosoma 101:214–221

    PubMed  CAS  Google Scholar 

  • Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4:529–540

    CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    PubMed  CAS  Google Scholar 

  • Ngan VK, Clarke L (1997) The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. Mol Cell BioI 17:3305–3314

    CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Nature 293:1150–1155

    CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal S, Watanabe Y (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HPI in fission yeast. Nat Cell BioI 4:89–93

    CAS  Google Scholar 

  • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1206

    PubMed  CAS  Google Scholar 

  • Ortiz J, Stemmann O, Rank S, Lechner J (1999) Aputative protein complex consisting of Ctfl9, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13:1140–1155

    PubMed  CAS  Google Scholar 

  • Osada S, Sutton A, Muster N, Brown CE, Yates JR, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASFl. Genes Dev 15:3155–3168

    PubMed  CAS  Google Scholar 

  • Osley MA, Lycan D (1987) Trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiaehistone genes. Mol Cell Biol 7:4204–4210

    PubMed  CAS  Google Scholar 

  • Palmer DK, Oday K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell BioI 104:805–815

    CAS  Google Scholar 

  • Panzieri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4:1867–1874

    Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88: 263–267

    PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14:783–91

    PubMed  CAS  Google Scholar 

  • Peters AH, O’carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C

    Google Scholar 

  • Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    PubMed  Google Scholar 

  • Pinto I, Winston F (2000) Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J 19:1598–1612

    PubMed  CAS  Google Scholar 

  • Platero JS, Hartnett T, Eissenberg JC (1995) Functional analysis of the chromo domain of HPl. EMBOJ 14:3977–3986

    CAS  Google Scholar 

  • Qian Z, Huang H, Hong JY, Burck CL, Johnston SD, Berman J, Carol A, Liebman W (1998) Yeast Tyl retrotransposition is stimulated by a synergistic interaction between mutations in Chromatin Assembly Factor-land histone regulatory (Hir) proteins. Mol Cell Biol 18:4783–4792

    PubMed  CAS  Google Scholar 

  • Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027

    PubMed  CAS  Google Scholar 

  • Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL (2001) Replication dynamics of the yeast genome. Science 294:115–121

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–99

    PubMed  CAS  Google Scholar 

  • Reuter G, Dorn R, Hoffmann HJ (1982) Butyrate sensitive suppressor of positioneffect variegation mutations in Drosophila melanogaster. Mol Gen Genet 188:480–485

    PubMed  CAS  Google Scholar 

  • Reuter G, Spierer P (1992) Position effect variegation and chromatin proteins. Bioessays 14:605–612

    PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Jorcano JL, Eder G, Lurz R (1979) in vitro core particle and nucleosome assembly at physiological ionic strength. Proc Natl Acad Sci USA 76: 3284–3288

    PubMed  CAS  Google Scholar 

  • Saffery R, Wong LH, Irvine DV, Bateman MA, Griffiths B, Cutts SM, Cancilla MR, Cendron AC, Stafford AI, Choo KH (2001) Construction of neocentromerebased human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 98:5705–5710

    PubMed  CAS  Google Scholar 

  • Saunders M, Fitzgerald-Hayes M, Bloom K (1988) Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci USA 85:175–179

    PubMed  CAS  Google Scholar 

  • Saunders MJ, Yeh E, Grunstein M, Bloom K (1990) Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol Cell Biol 10:5721–5727

    PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131

    PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    PubMed  CAS  Google Scholar 

  • Sharp JS, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast Histone Deposition Protein Asfl p Requires Hir Proteins and PCNA for Heterochromatic Silencing. Current Biology 11:463–473

    PubMed  CAS  Google Scholar 

  • Sharp JS, Franco AA, Osley MA, Kaufman PD (2002) Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 16:85–100

    PubMed  CAS  Google Scholar 

  • Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118

    PubMed  CAS  Google Scholar 

  • Shelby RD, Vafa O, Sullivan KF (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136:501–513

    PubMed  CAS  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–85

    PubMed  CAS  Google Scholar 

  • Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling De (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632

    PubMed  CAS  Google Scholar 

  • Smith J, Caputo E, Boeke J (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNAreplication and chromatin-modulating factors. Mol Cell Biol 19:3184–3197

    PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication. Cell 58:15–25

    PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNAreplication in vitro. EMBO J 10:971–980

    PubMed  CAS  Google Scholar 

  • Smothers JF, Henikoff S (2000) The HPI chromo shadow domain binds a consensus peptide pentamer. Curr Biol 10:27–30

    PubMed  CAS  Google Scholar 

  • Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Sccl/Rad21/Mcdl is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev.Cell 1:759–770

    PubMed  CAS  Google Scholar 

  • Spofford JB (1967) Single-locus modification of position-effect variegation in Drosophila melanogaster. 1.White variegation. Genetics 57:751–766

    PubMed  CAS  Google Scholar 

  • Steiner NC, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865–874

    PubMed  CAS  Google Scholar 

  • Stillman B (1986) Chromatin assembly during SV40 DNAreplication in vitro. Cell 45: 555–565

    PubMed  CAS  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  • Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96:14967–14972

    PubMed  CAS  Google Scholar 

  • Sullivan KF (2001) Asolid foundation: functional specialization of centromeric chromatin. Curr Opin Genet Dev 11:182–188

    PubMed  CAS  Google Scholar 

  • Sutton A, Bucaria losley MA, Sternglanz R (2001) Yeast ASF1 Protein is Required for Cell-Cycle Regulation of Histone Gene Transcription. Genetics 158: 587–596

    PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219

    PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y, Niwa O, Yanagida M (1991) A large number of tRNAgenes are symmetrically located in fission yeast centromeres. J Mol Biol 218:13–17

    PubMed  CAS  Google Scholar 

  • Tanaka T, Cosma MP, Wirth K, Nasmyth K (1999) Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–858

    PubMed  CAS  Google Scholar 

  • Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    PubMed  CAS  Google Scholar 

  • Tsuchiya E, Hosotani T, Miyakawa T (1998) A mutation in NPSI/STHl, an essential gene encoding a component of a novel chromatin-remodeling complex RSC,alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res 26:3286–3292

    PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    PubMed  CAS  Google Scholar 

  • Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila Chromatin Assembly Factor-lis homologous to a histone deacetylase-associated protein. Mol Cell BioI 16:6149–6159

    CAS  Google Scholar 

  • Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-l and ASF1 chromatin assembly factors. Mol Cell BioI 21:6574–84

    CAS  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr BioI 7:897–900

    CAS  Google Scholar 

  • Valdivia MM, Brinkley BR (1985) Fractionation and initial characterization of the kinetochore from mammalian metaphase chromosomes. J Cell Biol 101: 1124–1134

    PubMed  CAS  Google Scholar 

  • Van Hooser AA, Heald R (2001) Kinetochore function: the complications of beeoming attached. Curr BioI 11:R855–R877

    Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114: 3529–3542

    PubMed  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    PubMed  CAS  Google Scholar 

  • Wang G, Ma A, Chow CM, Horsley D, Brown NR, Cowell IG, Singh PB (2000) Conservation of heterochromatin protein 1 function. Mol Cell BioI 20:6970–6983

    CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan Ba, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr BioI 7:901–904

    CAS  Google Scholar 

  • Wood V et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880

    PubMed  CAS  Google Scholar 

  • Worcel A, Han S, Wong ML (1978) Assembly of newly replicated chromatin. Cell 15: 969–977

    PubMed  CAS  Google Scholar 

  • Xu H, Kim VJ, Schuster T, Grunstein M (1992) Identification of a new set of cell cycle-regulatory genes that regulate S-phase transcription of histone genes in Saccharomyces cerevisiae. Mol Cell Biol 12:5249–5259

    PubMed  CAS  Google Scholar 

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang W (2000) The human SWIISNF-B chromatin-remodeling complex is related to yeast RSCand localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci VSA 97:13015–13020

    CAS  Google Scholar 

  • Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97:7266–7271

    PubMed  CAS  Google Scholar 

  • Zhang Z, Shibahara K, Stillman B (2000) PCNA connects DNA replication to epigenetic inhertance in yeast. Nature 408:221–225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharp, J.A., Kaufman, P.D. (2003). Chromatin Proteins Are Determinants of Centromere Function. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics