Skip to main content

Optimal Control of Sublimation Growth of SiC Crystals

  • Chapter
Mathematics — Key Technology for the Future

Abstract

The project aims at providing numerical tools to control and optimize sublimation growth of SiC bulk single crystals via the Modified Lely Method. It is in cooperation with the experimental group of Dr. Dietmar Siche at the Institute of Crystal Growth in Berlin. In the course of the project the Modified Lely Method is mathematically modeled and numerically simulated. We present a transient model which for the gas phase consists of balance equations for mass, momentum and energy, and reaction-diffusion equations. The model for the solid components takes into account heat transfer via conduction inside the solid materials and via radiation between solid surfaces of cavities. Results of transient numerical simulations of the temperature evolution inside the growth apparatus are depicted, illustrating the paramount influence of radiation at growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aubreton, E. Blanquet, M.F. Elchinger, and M. Pons, Les Diffèrentes Voies de Modèlisation Macroscopique du Procèdè de Dèpùt de SiC par Voie Gazeuse, Ann. Chim. Sci. Mat. 23 (1998), 753–789.

    Article  Google Scholar 

  2. N. Bubner, O. Klein, P. Philip, J. Sprekels, and K. Wilmański, A transient model for the sublimation growth of silicon carbide single crystals, Journal of Crystal Growth 205 (1999), 294–304.

    Article  Google Scholar 

  3. D.L. Barret, J.P. McHugh, H.M. Hobgood, R.H. Hopkins, P.G. Mc-Mullin, R.C. Clarke, and W.J. Choyke, Growth of large SiC single crystals, Journal of Crystal Growth 128 (1993), 358–362.

    Article  Google Scholar 

  4. F. Dupret, P. Nicodéme, Y. Ryckmans, P. Wouters, and M.J. Crochet, Global modelling of heat transfer in crystal growth furnaces, Int. J. Heat Mass Transfer 33 (1990), no. 9, 1849–1871.

    Article  MATH  Google Scholar 

  5. J. Fuhrmann, Th. Koprucki, and H. Langmach, pdelib: An open modular tool box for the numerical solution of partial differential equations. Design patterns, Proceedings of the 14th GAMM Seminar on Concepts of Numerical Software, Kiel, Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, 1998, to press.

    Google Scholar 

  6. J. Fuhrmann, On numerical solution methods for nonlinear parabolic problems, Modelling and Computation in Environmental Sciences, Notes on Numerical Fluid Mechanics, vol. 59, Vieweg, Braunschweig/Wiesbaden, 1997, pp. 170–180.

    Article  MathSciNet  Google Scholar 

  7. G. L. Harris (ed.), Properties of Silicon Carbide, Institution of Electrical Engineers, INSPEC, London, 1995.

    Google Scholar 

  8. D. Hofmann, M. Heinze, A. Winnacker, F. Durst, L. Kadinski, P. Kaufmann, Y. Makarov, and M. Schäfer, On the sublimation growth of SiC bulk crystals: development of a numerical process model, Journal of Crystal Growth 146 (1995), 214–219.

    Article  Google Scholar 

  9. T. Kaneko, Growth kinetics of vapour-grown SiC, Journal of Crystal Growth 128 (1993), 354–357.

    Article  Google Scholar 

  10. A.O. Konstantinov, Sublimation growth of SiC, In Harris [Har95], pp. 170–203.

    Google Scholar 

  11. O. Klein, P. Philip, J. Sprekels, and K. Wilmański, Radiation-and convection-driven transient heat transfer during sublimation growth of silicon carbide single crystals, Weierstraß-Institut für Angewandte Analysis und Stochastik, Preprint 552 (2000).

    Google Scholar 

  12. S.K. Lilov, Study of the equilibrium processes in the gas phase during silicon carbide sublimation, Material Science and Engineering B 21 (1993), 65–69.

    Article  Google Scholar 

  13. S. Nishino, Bulk growth of SiC, In Harris [Har95], pp. 163–169.

    Google Scholar 

  14. M. Pons, M. Anikin, K. Chourou, J.M. Dedulle, R. Madar, E. Blanquet, A. Pisch, C. Bernard, P. Grosse, C. Faure, G. Basset, and Y. Grange, State of the art in the modelling of SiC sublimation growth, Material Science and Engineering B 61-62 (1999), 18–28.

    Article  Google Scholar 

  15. M. Pons, E. Blanquet, J.M. Dedulle, I. Garcon, R. Madar, and C. Bernard, Thermodynamic heat transfer and mass transport modelling of the sublimation growth of silicon carbide crystals, J. Electrochem. Soc. (1996).

    Google Scholar 

  16. M.S. Ramm, E.N. Mokhov, S.E. Demina, M.G. Ramm, A.D. Roenkov, Yu.A. Vodakov, A.S. Segal, A.N. Vorob’ev, S.Yu. Karpov, A.V. Kulik, and Yu.N. Makarov, Optimization of sublimation growth of SiC bulk crystals using modelling, Material Science and Engineering B 61-62 (1999), 107–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sprekels, J., Klein, O., Philip, P., Wilmański, K. (2003). Optimal Control of Sublimation Growth of SiC Crystals. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics