Skip to main content

Physics and Modeling of Bipolar Junction Transistors

  • Chapter
High-Frequency Bipolar Transistors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 11))

  • 601 Accesses

Abstract

Physics-based compact models provide insight into the relations between the layout, doping profiles and electrical parameters and therefore form a language for communication between process development and circuit design. This chapter looks at the physics of modern integrated bipolar junction transistors with particular emphasis on the derivation of closed-form expressions for their terminal behavior, which are required for the formulation of compact models. On the basis of these results, the most prominent compact models for large-signal and small-signal operation will be considered, together with a presentation of parameter extraction procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.K. Lynn, C.S. Meyer, D.J. Hamilton. Analysis and Design of Integrated Circuits. McGraw-Hill, New York, 1967.

    Google Scholar 

  2. J.L. Moll, I.M. Ross. The dependence of transistor parameters on the distribution of base layer resistivity. Proc. IRE, 44:72–78, 1956.

    Article  Google Scholar 

  3. J.J. Ebers, J.L. Moll. Large-signal behaviour of junction transistors. Proc. IRE, 42:1761–1772, 1954.

    Article  Google Scholar 

  4. J.L. Moll. Large-signal transient response of junction transistors. Proc. IRE, 42:1773–1784, 1954.

    Article  Google Scholar 

  5. J. Lindmayer, C. Wrigley. Alpha cutoff frequency of junction transistors. Solid-State Electron., 2(5):247–258, 1961.

    Article  Google Scholar 

  6. R.L. Pritchard. Electrical Characteristics of Transistors. McGraw-Hill, New York, 1967.

    Google Scholar 

  7. R. Beaufoy, J.J. Sparkes. The junction transistor as a charge-controlled device. ATE J., 13:310–327, 1957.

    Google Scholar 

  8. D.E. Hooper, A.R.T. Turnbull. Applications of the charge-control concept to transistor characterization. Proc. IRE Australia., 50(March):132–147, 1962.

    Google Scholar 

  9. J. te Winkel. Past and present of the charge-control concept in the characterization of the bipolar transistor. Adv. Electron. Electron Phys., 39:253–289, 1975.

    Article  Google Scholar 

  10. J. te Winkel. Extended chargc-conlrol model for bipolar transistors. IEEE Trans. Electron Devices, 20(4):389–394, 1973.

    Article  Google Scholar 

  11. H.K. Gummel. A charge control relation for bipolar transistors. Bell Syst. Tech. J., 49:115–120, 1970.

    Google Scholar 

  12. II.K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices, 11:455–465, 1964.

    Article  Google Scholar 

  13. H.K. Gummel, H.C. Poon. An integral charge control model of bipolar transistors. Bell Syst. Tech. J., 49:827–852, 1970.

    Google Scholar 

  14. J.J. Liou. Comments on “Early voltage in very-narrow-base bipolar transistors”. IEEE Electron Device Lett, 11(5):236, 1990.

    Article  MathSciNet  Google Scholar 

  15. S.-G. Lee, R.M. Fox. The effects of carrier-velocity saturation on high-current BJT ouput resistance. IEEE Trans. Electron Devices, 39(3):629–633, 1992.

    Article  Google Scholar 

  16. M. Kurata. A small-signal calculation for one-dimensional transistors. IEEE Trans. Electron Devices, 18(3):200–210, 1971.

    Article  Google Scholar 

  17. H. Klose, A.W. Wieder. The transient integral charge control relation — a novel formulation of the currents in a bipolar transistor. IEEE Trans. Electron Devices, 34(5):1090–1099, 1987.

    Article  Google Scholar 

  18. H.C. de Graaff, J.W. Slotboom, A. Schmitz. The emitter efficiency of bipolar transistors. Solid-State Electron., 20:515–521, 1977.

    Article  Google Scholar 

  19. K. Suzuki. Unified minority-carrier transport equation for polysilicon or heteromaterial emitter contact bipolar transistor. IEEE Trans. Electron Devices, 38(8):1868–1877, 1991.

    Article  Google Scholar 

  20. M. Takagi, K. Nakayama, C. Terada, II. Kamioka. Improvement of shallow base transistor technology by using a doped polysilicon diffusion source. J. Japan Soc. Appl. Phys. (Suppl.), 42:101–109, 1973.

    Google Scholar 

  21. H. Murrmann, J. Graul, A. Glasl. High-performance transistors with arsenic-implanted polysil emitters. IEEE J. Solid-State Circuits, 11(8):491–495, 1976.

    Google Scholar 

  22. C.M. Maritan, N.G. Tarr. Polysilicon emitter pnp transistors. IEEE Trans. Electron Devices, 36(6): 1139-1144, 1989.

    Google Scholar 

  23. C.Y. Wong, A.E. Michael, R.D. Isaac, R.H. Kastl, S.R. Mader. The poly-single crystalline silicon interface. J. Appl. Phys., 55(4):1131–1134, 1984.

    Article  Google Scholar 

  24. J.C. Bravman, G.L. Patton, J.D. Plummer. Structure and morphology of polycrys-talline silicon-single crystal silicon interfaces. J. Appl. Phys., 57(8):2779–2782, 1985.

    Article  Google Scholar 

  25. K. Sagara, T. Nakamura, Y. Tamaki, T. Shiba. The effect of thin interfacial oxides on the electrical characteristics of silicon bipolar devices. IEEE Trans. Electron Devices, 34(11):2286–2290, 1987.

    Article  Google Scholar 

  26. H.C. de Graaff, J.G. de Groot. The SIS tunnel emitter: a theory for emitters with thin interface layers. IEEE Trans. Electron Devices, 26(11):1771–1776, 1979.

    Article  Google Scholar 

  27. T.H. King, R.D. Isaac. Effect of emitter contact on current gain of silicon bipolar devices. IEEE Trans. Electron Devices, 27(11):2051–2055, 1980.

    Article  Google Scholar 

  28. G.L. Patton, J.C. Bravman, J.D. Plummer. Physics, technology, and modeling of polysilicon emitter contacts for VLSI bipolar transistors. IEEE Trans. Electron Devices, 33(11):1754–1768, 1986.

    Article  Google Scholar 

  29. D.-L. Chan, D.W. Greeve, A.M. Guzman. Minority-carrier hole diffusion length in heavily doped polysilicon and its influence on polysilicon-emitter transistors. IEEE Trans. Electron Devices, 35(7):1045–1054, 1988.

    Article  Google Scholar 

  30. T.F. Meister, K. Ehinger, H. Kabza, C. Fruth, R. Schreiter, M. Biebl. Electrical transport properties in polysilicon emitters investigated by variation of poly-Si thickness. Proc. IEEE BCTM, pp.86-89, 1989.

    Google Scholar 

  31. A.A. Eltoukhy. D.J. Roulson. The role of the interfacial layer in polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices, 29(12):1862–1869, 1982.

    Article  Google Scholar 

  32. Z. Yu, B. Ricco, R.W. Dutton. A comprehensive analytical and numerical model of polysilicon emitter contacts in bipolar transistors. IEEE Trans. Electron Devices, 31(6):773–784, 1984.

    Article  Google Scholar 

  33. I.R.C. Post, P. Ashburn, G.R. Wolstenholme. Polysilicon emitters for bipolar transistors: a review and re-cvaluation of theory and experiment. IEEE Trans. Electron Devices, 39(7):1717–1731, 1992.

    Article  Google Scholar 

  34. J.D. Cresler, D.D. Tang, K.A. Jenkins, G.-P. Li, E.S. Yang. On the low-temperature static and dynamic properties of high-performance silicon bipolar transistors. IEEE Trans. Electron Devices, 36(8):1489–1502, 1989.

    Article  Google Scholar 

  35. M. Pohl, K. Aufingcr, J. Böck, T.F. Meister, H. von Philipsborn. DC and AC performance of Si and Si/Si1-x Gex bipolar transistors at temperatures up to 300°C. Proc. ESSDERC, 28:100–103, 1998.

    Google Scholar 

  36. C.-T. Sah, R.N. Noyce, W. Shockley. Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE, 45:1228–1243, 1957.

    Article  Google Scholar 

  37. S.C. Choo. Carrier generation recombination in the space charge region of an asymmetrical pn junction. Solid-State Electron., 11:1069–1077, 1968.

    Article  Google Scholar 

  38. S.C. Choo. On space-charge recombination in pn junctions. Solid-State Electron., 39(2):308–310, 1996.

    Article  Google Scholar 

  39. M. Reisch. Tunneling-induced leakage currents in pn junctions. Archiv Electronik Übertragungstechnik, 44(5):368–376, 1992.

    Google Scholar 

  40. J. del Alamo, R.M. Swanson. Forward-bias tunneling limits in scaled bipolar devices. Extended Abstracts, SSDM, Tokyo, pp. 283-286, 1986.

    Google Scholar 

  41. G.P. Li, E. Ilackbarth, T.-C. Chen. Identification and implication of a perimeter tunneling current component in advanced self-aligned bipolar transistors. IEEE Trans. Electron Devices, 35(1):89–95, 1988.

    Article  Google Scholar 

  42. J. Snel. The doped Si/SiO2 interface. Solid-State Electron, 24:135–139, 1981.

    Article  Google Scholar 

  43. J.M.C. Stork, R.D. Isaac. Tunneling in base-emitter junctions. IEEE Trans. Electron Devices, 30(11):1527–1534, 1983.

    Article  Google Scholar 

  44. G.A.M. Hurkx. On the modelling of tunneling currents in reverse-biased p-n junctions. Solid-State Electron., 32(8):665–668, 1989.

    Article  Google Scholar 

  45. S.M. Sze. Physics of Semiconductor Devices. Wiley, New York, 2nd edition, 1982.

    Google Scholar 

  46. S.L. Miller, Ionization rates for holes and electrons in silicon. Phys. Rev.. 105(4):1246–1249, 1957.

    Article  Google Scholar 

  47. R.W. Dutton. Bipolar transistor modeling of avalanche generation for computer circuit simulation. IEEE Trans. Electron Devices, 22(6):334–338, 1975.

    Article  Google Scholar 

  48. M. Reisch. On bistable behavior and open-base breakdown of bipolar transistors in the avalanche regime — modeling and applications. IEEE Trans. Electron Devices. 39(6):1398–1409, 1992.

    Article  Google Scholar 

  49. H.C. Poon, J.C. Meckwood. Modeling of avalanche effect in integral charge control model. IEEE Trans. Electron Devices, 19(1):90–97, 1972.

    Article  Google Scholar 

  50. W.J. Kloostcrman, H.C. de Graaff. Avalanche multiplication in a compact bipolar transistor model for circuit simulation. IEEE Trans. Electron Devices, 36(7):1376–1380, 1989.

    Article  Google Scholar 

  51. A.S. Grove. Physics and Technology of Semiconductor Devices. Wiley, New York, 1st edition, 1967.

    Google Scholar 

  52. J.L. Moll. Physics of Semiconductors. McGraw-Hill, New York, 1964.

    MATH  Google Scholar 

  53. M. Reisch. Ladungstrgermultiplikation in selbstjustierten Bipolartransistoren. Dissertation, TU Wien, 1989.

    Google Scholar 

  54. J. Lohstroh, J.J.M. Koomen, A.T. van Zanten, R.H.W. Salters. Punchthrough-currents in pnp and npn sandwich structures — I. Introduction and basic calculations. Solid-State. Electron., 24(9):805–814, 1981.

    Article  Google Scholar 

  55. J. Lohstroh, J.J.M. Koomen, A.T. van Zanten, R.H.W. Salters. Punchthrough-currents in pnp and npn sandwich structures — II. General low-injection theory and measurements. Solid-State Electron., 24(9):815–820, 1981.

    Article  Google Scholar 

  56. S. Esener, S.U. Lee. Punch-through current under diffusion-limited injection: analysis and applications. J. Appl. Phys., 58(3):1380–1387, 1985.

    Article  Google Scholar 

  57. C.T. Chuang, D.D. Tang, G.P. Li, E. Hackbarth.On the punchthrough characteristics of advanced self-aligned bipolar transistors. IEEE Trans. Electron Devices, 34(7):1519–1524, 1987.

    Article  Google Scholar 

  58. H.K. Gummel, D.L. Scharfetter. Depletion-layer capacitance of p+n step junctions. J. Appl. Phys., 38(5):2148–2153, 1967.

    Article  Google Scholar 

  59. J.J.H. van den Biesen. P-N junction capacitances, part I: the depletion capacitance. Philips J. Res., 40(2):88–102, 1985.

    Google Scholar 

  60. H.C. Poon, H.K. Gummel. Modeling of emitter capacitance. Proc. IEEE, 44(3):200–207, 1990.

    Google Scholar 

  61. H.C. de Graaff, F.M. Klaassen. Compact Transistor Modeling for Circuit Design. Springer, Vienna, 1990.

    Book  Google Scholar 

  62. L.J. Varnerin. Stored charge method of transistor base transit analysis. Proc. IRE, 47:523–527, 1959.

    Article  Google Scholar 

  63. J.J.H. van den Biesen. A simple regional analysis of transit time in bipolar transistors. Solid-State Electron., 29:529–534, 1986.

    Article  Google Scholar 

  64. J.M. Early. PNIP and NPIN junction transistor triodes. Dell Syst. Tech. J., 33(3):517–533, 1954.

    Google Scholar 

  65. H. Krömer. Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region. Solid-State Electron., 28(11):1101–1103, 1985.

    Article  Google Scholar 

  66. C.T. Kirk. A theory of transistor cutoff frequency (f T) fall off at high current densities. IRE Trans. Electron Devices, 9(5):164–174, 1962.

    Article  Google Scholar 

  67. K.J. Whittier, D.A. Tremere. Current gain and cutoff frequency falloff at high currents. IEEE Trans. Electron Devices, 16(1):39–57, 1969.

    Article  Google Scholar 

  68. K. Suzuki, N. Nakayama. Base transit time of shallow-base bipolar transistors considering velocity saturation at base-collector junction. IEEE Trans. Electron Devices. 39(3):623–628, 1992.

    Article  Google Scholar 

  69. N. Rinaldi. Analytical relations for the base transit time and collector transit time in BJTs and HBTs. Solid-State Electron., 41(8):1153–1158, 1997.

    Article  Google Scholar 

  70. G. Baccarani, M.R. Wordeman. An investigation of steady-state velocity overshoot in silicon. IEEE Trans. Electron Devices, 28(4):407–416, 1985.

    Google Scholar 

  71. A.A. Grinberg, S. Luryi. Diffusion in a short base. Solid-State Electron., 35(9):1299–1309, 1992.

    Article  Google Scholar 

  72. O. Hansen. Diffusion in a short base. Solid-State Electron., 37(9):1663–1669, 1994.

    Article  Google Scholar 

  73. R. van Overstraeten, H. de Man, R. Mertens. Influence of heavy doping effects on the f T prediction of transistors. Electron. Lett, 9(8/9):174–176. 1973.

    Google Scholar 

  74. J.A. Kerr, F. Berz. The effect of emitter doping gradient on f T in microwave bipolar transistors. IEEE Trans. Electron Devices, 22(1):15–20, 1975.

    Article  Google Scholar 

  75. J.J.H. van den Biesen. P-N junction capacitances, part i: the neutral capacitance. Philips J. Res., 40(2):103–113, 1985.

    Google Scholar 

  76. J.-S. Park, A. Neugroschel. Current dependence of the emitter resistance of bipolar transistors. IEEE Trans. Electron Devices, 37(6):1540–1542, 1990.

    Article  Google Scholar 

  77. J.R. Hauser. The effects of distributed base potential on emitter-current injection density and effective base resistance for stripe transistor geometries. IEEE Trans. Electron Devices, 11:238–242, 1964.

    Article  Google Scholar 

  78. H.N. Ghosh. A distributed model of the junction transistor and its application in the prediction of the emitter-base diode characteristic, base impedance, and pulse response of the device. IEEE Trans. Electron Devices, 12(10):513–531, 1965.

    Article  Google Scholar 

  79. J.E. Lary, R.L. Anderson. Effective base resistance of bipolar transistors. IEEE Trans. Electron Devices, 32(11):2503–2505, 1985.

    Article  Google Scholar 

  80. E.W. Greeneich. Base spreading resistance of polysilicon self-aligned bipolar transistors. IEEE Trans. Electron Devices, 36(1):147–149, 1989.

    Article  Google Scholar 

  81. H.-M. Rein, M. Schröter. Base spreading resistance of square-emitter transistors and its dependence on current crowding. TEEE Trans. Electron Devices, 36(4):770–773, 1989.

    Article  Google Scholar 

  82. M. Schröter. Simulation and modeling of the low-frequency base resistance of bipolar transistors and its dependence on current and geometry. IEEE Trans. Electron Devices, 38(3):538–544, 1991.

    Article  Google Scholar 

  83. P. Antognetti, G. Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, New York, 1989.

    Google Scholar 

  84. H.C. de Graaff, J.A. Pals. On the behaviour of the base-collector junction of a transistor at high collector current densities. Philips Res. Rep., 24:53–69, 1969.

    Google Scholar 

  85. W.M. Webster. On the variation of junction-transistor current-amplification factor with emitter current. Proc. IRE, 42:914–920, 1954.

    Article  Google Scholar 

  86. J.R. Beale, J.A. Slatter. The equivalent circuit of a transistor with lightly-doped collector operating in saturation. Solid-State Electron., 11:241–252, 1969.

    Article  Google Scholar 

  87. G. Rey, F. Dupuy, J.P. Bailbe. A unified approach to the base widening mechanisms in bipolar transistors. Solid-State Electron., 18:863–866, 1975.

    Article  Google Scholar 

  88. H.C. de Graaff. High current density effects in the collector of bipolar transistors. In Process and Device Modeling for Integrated Circuit Design, F. van de Wiele, W.L. Engl and P.G. Jespers (eds.), Noordhoff International, pp. 419–442, 1977.

    Google Scholar 

  89. S.-W. Lee, P. Lloyd, J. Prendergast, G.M. Kull, L.W. Nagel, H. Dirks. A unified circuit model for bipolar transistors including quasi-saturation effects. IEEE Trans. Electron Devices, 32(6):1103–1113. 1985.

    Article  Google Scholar 

  90. H.J. Jeong, J.G. Fossum. Physical modeling of high-current transients for bipolar transistor circuit simulation. IEEE Trans. Electron Devices, 34(4):898–905, 1987.

    Article  Google Scholar 

  91. H.C. de Graaff, W.C. Klosterman. Modeling of the collector epilayer of a bipolar transistor in the mextram model. IEEE Trans. Electron Devices, 42(2):274–282, 1995.

    Article  Google Scholar 

  92. H.J. Jeong, J.G. Fossum. A charge-based large-signal bipolar transistor model for device and circuit simulation. IEEE Trans. Electron Devices, 36(1):124–131, 1989.

    Article  Google Scholar 

  93. J.C.J. Paasschens, W.J. Kloosterman, R.J. Havens, H.C. de Graaff. Improved compact modeling of output conductance and cutoff frequency of bipolar transistors. IEEE J. Solid-State Circuits, 36(9):1390–1398, 2001.

    Article  Google Scholar 

  94. J.C.J. Paaschens, W.J. Kloosterman. The MEXTRAM Bipolar Transistor Model Level 504, National Laboratory unclassified report NL-UR 2000/811. Internet, http://www.semiconductors.philips.com/Philips_Models/, 2001.

  95. C.A. Desoer, E.S. Kuh. Basic Circuit Theory. McGraw-Hill, New York, 1969.

    Google Scholar 

  96. M. Pfost, H.-M. Rein, T. Holzwarth. Modeling substrate effects in the design of high-speed Si-bipolar IC’s. IEEE J. Solid-Stale Circuits, 31(10):1493–1591, 1996.

    Article  Google Scholar 

  97. M. Pfost, H.-M. Rein. Modeling and measurement substrate coupling in Si-bipolar IC’s up to-10 GHz. IEEE J. Solid-State Circuits, 33(4):582–591, 1998.

    Article  Google Scholar 

  98. P.B. Weil, L.P. McNamee. Simulation of excess phase in bipolar transistors. IEEE Trans. Circuits Syst., CAS-25:114–116, 1978.

    Article  Google Scholar 

  99. J. Seitchik, A. Chatterjee, P. Yang. An accurate bipolar model for large signal transient and ac applications. TEDM Tech. Dig., pp. 244–247, 1987.

    Google Scholar 

  100. J.A. Seitchik. Comment on “One-dimensional non-quasi-static models for arbitrarily and heavily doped quasi-neutral layers in bipolar transistors”. IEEE Trans. Electron Devices, 37(9):2108–2111, 1990.

    Article  Google Scholar 

  101. R.L. Pritchard. Two-dimensional current flow injunction transistors at high frequencies. Proc. IRE, 46(June):1152–1160, 1958.

    Article  Google Scholar 

  102. G. Rey. Effets de la defocalisation (ce. et c.a.) sur le comportement des transistors a jonctions. Solid-State Electron., 12:645–659, 1969.

    Article  Google Scholar 

  103. A.S. Grove. Physics and Technology of Semiconductor Devices. Wiley, New York, 1967.

    Google Scholar 

  104. K.G. Ashar. The method of estimating delay in switching circuits and the figure of merit of a switching transistor. IEEE Trans. Electron Devices, 11:497–506, 1964.

    Article  Google Scholar 

  105. H.K. Gummel. On the definition of the cutoff frequency f T. Proc. IEEE, 57:2159, 1969.

    Article  Google Scholar 

  106. W.C. Elmore. The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys., 19:55–63, 1948.

    Article  Google Scholar 

  107. T.I. Kamins. Effect of polysilicon-emitter shape on dopant diffusion in polysilicon-emitter transistors. IEEE Electron Device Lett., 10(9):401–404, 1989.

    Article  Google Scholar 

  108. K. Kurishima. An analytic expression of f max for HBT’s. IEEE Trans. Electron Devices, 43(2):2074–2079, 1996.

    Article  Google Scholar 

  109. M. Vaidyanathan, D.L. Pulfrey. Extrapolated f max of heterojunction bipolar transistors. IEEE Trans. Electron Devices, 46(2):301–309, 1999.

    Article  Google Scholar 

  110. M.B. Das. High-frequency performance limitations of millimeter-wave heterojunction bipolar transistors IEEE Trans. Electron Devices, 35(5):604–614, 1988.

    Article  Google Scholar 

  111. M.II. White, M.O. Thurston. Characterization of microwave transistors. Solid-State Electron., 13:523–542, 1970.

    Article  Google Scholar 

  112. D. Gloria, A. Perrotin, J.L. Carbonero, G. Morin. Substrate resistance effect on the f max parameter of iolated BJT in BICMOS process. Proc. IEEE Int. Conf. Microelectronic Test Struct., 12:24–29, 1999.

    Google Scholar 

  113. K. Aufinger. Physikalische Modellierung der Rauscheigenschaften von Silizium-und Silizium-Germanium-Höchstfrequenz-Bipolartransistoren. Dissertation, TU Innsbruck, 2001.

    Google Scholar 

  114. G.W. Taylor, J.G. Simmons. Figure of merit for integrated bipolar transistors. Solid-State Electron., 29(9):941–946, 1986.

    Article  Google Scholar 

  115. G.A.M. Hurkx. The relevance of f T and f max for the speed of a bipolar CE amplifier stage. IEEE Trans. Electron Devices, 44(5):775–781, 1997.

    Article  Google Scholar 

  116. D.D. Tang, P.M. Solomon. Bipolar transistor design for optimized power-delay logic circuits. IEEE J. Solid-State Circuits, 14(4):679–684, 1979.

    Article  Google Scholar 

  117. J.M.C. Stork. Bipolar transistor scaling for minimum switching delay and energy dissipation. IEDM Tech. Dig., pp. 550-553, 1988.

    Google Scholar 

  118. P.K. Tien. Propagation delay in high speed silicon bipolar and GaAs HBT digital circuits. Int. J. High Speed Electron., 1(1):101-124, 1990.

    Google Scholar 

  119. M.Y. Ghannam, R.P. Mertens, R.J. van Overstraeten. An analytical model for the determination of the transient response of CML and ECL gates. IEEE Trans. Electron Devices, 37(1):191–201, 1990.

    Article  Google Scholar 

  120. J.M. McGregor, D.J. Roulston, J.S. Hamel, M. Vaidyanathan, S.C. Jain, P. Balk. A simple expression for ECL propagation delay including non-quasi-static effects. Solid-State Electron., 36(3):391–396, 1993.

    Article  Google Scholar 

  121. K.M. Sharaf, M.I. Elmasry. An accurate analytical propagation delay model for highspeed CML bipolar circuits. IEEE J. Solid-Stale Circuits, 29(1):31–45, 1994.

    Article  Google Scholar 

  122. Y. Harada. Delay components of a current mode logic circuit and their current dependency. IEEE J. Solid-State Circuits, 30(1):54–60, 1995.

    Article  MathSciNet  Google Scholar 

  123. E.W. Greeneich. An appropriate device figure of merit for bipolar CML. IEEE Electron Device Lett., 12(1):18–20, 1991.

    Article  Google Scholar 

  124. E.J. Prinz, J.C. Sturm. Current gain — Early voltage products in heterojunction bipolar transistors with nonuniform base bandgaps. IEEE Electron Device Lett., 12(12):661–663, 1991.

    Article  Google Scholar 

  125. E.O. Johnson. Physical limitations on frequency and power parameters of transistors. RCA Rev., 26:165, 1965.

    Google Scholar 

  126. K.K. Kg, M. Frei, C.A. King. Reevaluation of the f T BV CEO limit on Si bipolar transistors. IEEE Trans. Electron Devices, 45(8):1854–1855, 1998.

    Article  Google Scholar 

  127. P. Palestri, C. Fiegna, L. Selmi, G.A.M. Hurkx, J.W. Slotboom, E. Sangiorgi. Optimization guidelines for epitaxial collectors of advanced BJT’s with improved breakdown voltage and speed IEDM Tech. Dig., pp. 741–744, 1998.

    Google Scholar 

  128. R.M. Fox, S.-G. Lee, D.T. Zweidinger. The effects of BJT self-heating on circuit behavior IEEE J. Solid-State Circuits, 28(6):678–685, 1993.

    Article  Google Scholar 

  129. D.L. Harame, D.O. Ahlgren, D.D. Coolbaugh, J.S. Dunn, G.G. Freeman, J.D. Gillis, R.A. Groves, G.N. Hendersen, R.A. Johnson, A.J. Joseph, S. Subbamia, A.M. Victor, K.M. Watson, C.S. Webster, P.J. Zampardi. Current status and future trends of SiGe BTCMOS technology. TREE Trans. Electron Devices, 48(11):2575–2594, 2001.

    Article  Google Scholar 

  130. M.H. Norwood, E. Shatz. Voltage variable capacitor tuning: a review. Proc. IEEE, 56(5):788–798, 1968.

    Article  Google Scholar 

  131. D.T. Zweidinger, S.G. Lee, R.M. Fox. Compact modeling of BJT self-healing in SPICE. IEEE Trans. CAD, 12(9):1368–1375, 1993.

    Google Scholar 

  132. I.E. Getreu. Modeling the Bipolar Transistor. Tektronix, Beaverton, 1976.

    Google Scholar 

  133. C.C. McAndrew, L.W. Nagel. Early effect modeling in SPICE. IEEE J. Solid-State Circuits, 31(1):136–138, 1996.

    Article  Google Scholar 

  134. D.D. Tang, T.H. Ning. Method for determining the emitter and base scries resistances of bipolar tranistors. IEEE Trans. Electron Devices, 31(4):409–412, 1984.

    Article  Google Scholar 

  135. R.C. Taft, J.D. Plummer. An eight-terminal Kelvin-tapped bipolar transistor for extracting parasitic series resistances. IEEE Trans. Electron Devices, 38(9):2139–2154, 1991.

    Article  Google Scholar 

  136. J. Weng, J. Holz, T.F. Meister. New method to determine the base resistance of bipolar transistors. IEEE Electron Device Lell., 13:158–160, 1992.

    Article  Google Scholar 

  137. E. Dubois, P.H. Bricout, E. Robilliart. Extraction method of the base series resistance in bipolar transistors in presence of current crowding. IEEE J. Solid-State Circuits, 31(1):132–135, 1996.

    Article  Google Scholar 

  138. M. Linder, F. Ingvarson, K.O. Jeppson, J.V. Grahn, S.-L. Zhang, M. Ostling. A new procedure for extraction of series resistances for bipolar transistors from de measurements. Proc. IEEE Int. Conf. Microelectron. Test Struct., 12:147–151, 1999.

    Google Scholar 

  139. B. Kulke, S.L. Miller. Accurate measurement of emitter and collector series resistances in transistors. Proc. IRE, 45:90, 1957.

    Google Scholar 

  140. L.J. Giacoletto. Measurement of emitter and collector series resistances. IEEE Trans. Electron Devices, 19:692–693, 1972.

    Article  Google Scholar 

  141. R. Gabl, M. Reiseh. Emitter series resistance from open-collector measurements influence of the collector region and the parasitic pnp transistor. IEEE Trans. Electron Devices, 45(12):2457–2465, 1998.

    Article  Google Scholar 

  142. M. Reisch. Carrier multiplication and avalanche breakdown in self-aligned bipolar transistors. Solid-State Electron., 33(2):189–197, 1990.

    Article  Google Scholar 

  143. M. Reisch. Self-heating in BJT circuit parameter extraction. Solid-State Electron., 35(5):677–679, 1992.

    Article  Google Scholar 

  144. H. Tran, M. Schröt er, D.J. Walkey, D. Marchesan, T.J. Smy. Simultaneous extraction and emitter series resistances in bipolar transistors. Proc. IEEE DCTM, pp. 170-173, 1997.

    Google Scholar 

  145. D.T. Zweidinger, R.M. Fox, J.S. Brodsky, T. Jong, S.-G. Lee. Thermal impedance extraction for bipolar transistors. IEEE Trans. Electron Devices, 43(2):342–346, 1996.

    Article  Google Scholar 

  146. [146] Hewlett Packard. S-Parameter design. Application Note 154, Hewlett Packard 1972.

    Google Scholar 

  147. P.J. van Wijnen, H.R. Ciaessen, E.A. Wolsheimer. A new straightforward calibration and correction procedure for “on wafer” high-frequency s-parameter measurements (45 MHz — 18 GHz). Proc. IEEE BCTM, pp. 70-73, 1987.

    Google Scholar 

  148. M.C.A.M. Koolen, J.A.M. Geelen, M.P.J.G. Versleijen. An improved de-embedding technique for on-wafer high-frequency characterization. Proc. IEEE BCTM, pp. 188-191, 1991.

    Google Scholar 

  149. D. Costa, W.U. Liu, J.S. Harris. Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans. Electron Devices, 38(9):2018–2024, 1991.

    Article  Google Scholar 

  150. S. Lee, B.R. Ryum, S.W. Kang. A new parameter extraction technique for small-signal equivalent circuit of polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices, 41(2):233–238, 1994.

    Article  Google Scholar 

  151. D.P. Kennedy, P.C. Murley, W. Kleinfelder. On the measurement of impurity atom distributions in silicon by the differential capacitance technique. IBM J. Res. Dev., 12:399–409, 1968.

    Article  Google Scholar 

  152. D.P. Kennedy, R.R. O’Brien. On the measurement of impurity atom distributions in silicon by the differential capacitance technique. IBM J. Res. Dev., 13:212–214, 1969.

    Article  Google Scholar 

  153. W.T. Johnson, P.T. Panousis. The influence of Debye length on the C-V measurement of doping profiles. IEEE Trans. Electron Devices, 18:965–973, 1971.

    Article  Google Scholar 

  154. W.E. Carter. H.K. Gummel, B.R. Chawla. Interpretation of capacitance vs. voltage measurements of pn junctions. Solid-State Electron., 15:195–201, 1972.

    Article  Google Scholar 

  155. C.P. Wu, E.G. Douglas, C.W. Mueller. Limitations of the CV technique for ionimplanted profiles. IEEE Trans. Electron Devices, 22:319–329, 1975.

    Article  Google Scholar 

  156. W.M.C. Sansen, R.G. Meyer. Characterization and measurement of the base and emitter resistances of bipolar transistors. IEEE J. Solid-State Circuits, 7(6):492–498, 1972.

    Article  Google Scholar 

  157. T. Fuse, Y. Sasaki. An analysis of small-signal and large-signal base resistances for submicrometer BJTs. IEEE Trans. Electron Devices, 42(3):534–539, 1995.

    Article  Google Scholar 

  158. A. Neugroschel. Measurement of the low-current base and emitter resistances of bipolar transistors. IEEE Trans. Electron Devices, 34(4):817–822, 1987.

    Article  Google Scholar 

  159. C.C. McAndrcw, J.A. Scitchik, D.F. Bowers, M. Dunn, M. Foisy, I. Getreu, M. Mc-Swain, S. Moinian, J. Parker, D.J. Roulston, M. Schröter, P. van Wijnen, L.F. Wagner. VBIC95, the vertical bipolar inter-company model. IEEE J. Solid-State Circuits, 31(10):1476–1483, 1996.

    Article  Google Scholar 

  160. H.-M. Rein, H. Stübing. A compact physical large-signal model for high-speed bipolar transistors at high current densities — part i: onc-dimcnsional model. IEEE Trans. Electron Devices, 34(8):1741–1751, 1987.

    Article  Google Scholar 

  161. H.-M. Rein, M. Schröter. A compact physical large-signal model for high-speed bipolar transistors at high current densities — part ii: two-dimensional model and experimental results. IEEE Trans. Electron Devices, 34(8):1752–1761, 1987.

    Article  Google Scholar 

  162. M. Schröter. HICUM — A Scalable Physics-Based Compact Bipolar Transistor Model, Description of Model Version 2.1. Internet, http://www.icc.tu.drcsdcn.de/schrotcr/Modcls/hicman.pdf, 2001.

  163. M. Schröter, H.-M. Rein, W. Rabe, R. Reimann, H.-J. Wassener, A. Koldehoff. Physics-and process-based bipolar transistor modeling for integrated circuit design. IEEE J. Solid-State Circuits, 34(8):1136–1149, 1999.

    Article  Google Scholar 

  164. M. Schröter. TRADICA — A Program for Sizing and Model Parameter Generation of Integrated Bipolar Transistors, Manual Version 4.5, June 2000. Internet, http://www.iee.tu.dresden.de/schroter/Models/hicman.pdf, 2000.

  165. M. Schröter, T.Y. Lee, Z. Yan, W. Shi. A compact tunneling current and collector breakdown model. Proc. IEEE BCTM, pp. 203–206, 1998.

    Google Scholar 

  166. H.-M. Rein, H. Stübing, M. Schröter. Verification of the integral charge-control rela-tion for high-speed bipolar transistors at high current densities. IEEE Trans. Electron Devices, 32(6):1070–1076, 1985.

    Article  Google Scholar 

  167. M. Schröter, M. Friedrich, H.-M. Rein. A generalized integral charge-control relation and its application to compact models for silicon-based HBTs. IEEE Trans. Electron Devices, 40(11):2036–2046, 1993.

    Article  Google Scholar 

  168. M. Schröter. Simulation and modeling of the low-frequency base resistance of bipolar transistors and its dependence on current and geometry. IEEE Trans. Electron Devices, 38(3):538–544, 1991.

    Article  Google Scholar 

  169. D.L. Bowler, F.A. Lindholm. High current regimes in transistor collector regions. IEEE Trans. Electron Devices, 20(3):257–263, 1973.

    Article  Google Scholar 

  170. M. Schröter, T.-Y. Lee. Physics-based minority charge and transit time modeling for bipolar transistors. IEEE Trans. Electron Devices, 46(2):288–300, 1999.

    Article  Google Scholar 

  171. M. Schröter, H.-M. Rein. Investigation of very fast and high-current transients in digital bipolar IC’s using both a new compact model and a device simulator. IEEE J. Solid-State Circuits, 30(5):551–562, 1995.

    Article  Google Scholar 

  172. [172] Philips. Bipolar NPN Transistors TN/TNS Level 503. Internet, http://www.scmiconductors.philips.com/PhilipsJVIodcls/, 2000.

  173. J.C.J. Paaschens, W.J. Kloosterman, R.J. Havens. Parameter Extraction for the Bipolar Transistor Model Mextram Level 504 National Laboratory unclassified report NL-UR 2001/801. Internet, http://www.semiconductors.philips.com/PhilipsJVIodels/. 2001.

  174. J.C.J. Paaschens, W.J. Kloosterman, R.J. Havens, H.C. de Graaff. Improved compact modeling of output conductance and cutoff frequency of bipolar transistors. IEEE J. Solid-State Circuits, 36(9):1390–1398, 2001.

    Article  Google Scholar 

  175. W.J. Kloosterman, J.C.J. Paasschens, R.J. Havens. A comprehensive bipolar avalanche multiplication compact model for circuit simulation. Proc. IEEE BCTM, pp. 172–175, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reisch, M. (2003). Physics and Modeling of Bipolar Junction Transistors. In: High-Frequency Bipolar Transistors. Springer Series in Advanced Microelectronics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55900-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55900-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63205-1

  • Online ISBN: 978-3-642-55900-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics