Skip to main content

Arenaviruses: Genomic RNAs, Transcription, and Replication

  • Chapter
Arenaviruses I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 262))

Abstract

The arenavirus genome comprises two single-stranded RNA molecules of negative polarity, designated L and S, that contain essentially nonoverlapping sequence information (for extensively referenced reviews see Buchmeier et al. 1980; Lehmann-Grube 1984; Howard 1986; Salvato 1993a; Southern 1996). There is some variability in the lengths of the genomic RNA segments for individual arenaviruses (L approximately 7,200 bases, S approximately 3,400 bases), but the general organization of the L and S genomic RNA species appears to be well conserved across the virus family. An extensive compilation of arenavirus genomic RNA sequence is now available, and this information has been used to derive phylogenetic relationships amongst the known arenaviruses (Bowen et al. 1997; Albarino et al. 1998). Sequence alignments have also facilitated the development of a generalized scheme to amplify arenavirus genomic RNAs by RT-PCR (Lozano et al. 1997) This innovative diagnostic resource, together with a specific RT-PCR assay for LCMV (Park et al. 1997), should have a significant positive impact on the rapid recognition and characterization of new arenavirus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarino CG, Posik DM, Ghiringhelli PD, Lozano ME, Romanowski V (1998) Arenavirus phylogeny: a new insight. Virus Genes 16:39–16

    Article  PubMed  CAS  Google Scholar 

  • Auperin DD, McCormick JB (1988) Nucleotide sequence of the Lassa virus (Josiah strain) S genome RNA and amino acid sequence comparison of the N and GPC proteins to other arenaviruses. Virology 168:421–125

    Article  Google Scholar 

  • Auperin DD, Compans RW, Bishop DHL (1982a) Nucleotide sequence conservation at the 3’ termini of the virion RNA species of New World and Old World arenaviruses. Virology 121:200–203

    Article  CAS  Google Scholar 

  • Auperin D, Dimock K, Cash P, Rawls WE, Leung W-C, Bishop DHL (1982b) Analyses of the genome of prototype Pichinde arenavirus and a virulent derivative of Pichinde Munchique: evidence for sequence conservation at the 3’ termini of their viral RNA species. Virology 116:363–367

    Article  CAS  Google Scholar 

  • Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52:897–904

    PubMed  CAS  Google Scholar 

  • Banerjee SN, Buchmeier M, Rawls WE (1976) Requirement of a cell nucleus for the replication of an arenavirus. Intervirology 6:190–196

    Article  CAS  Google Scholar 

  • Bishop DHL (1986) Ambisense RNA genomes of arenaviruses and phleboviruses. Adv Virus Res 31:1–51

    Article  PubMed  CAS  Google Scholar 

  • Borden KLB, Campbell Dwyer EJ, Carlile GW, Djavani M, Salvato MS (1998a) Two RING finger proteins, the oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins. J Virol 72:3819–3826

    CAS  Google Scholar 

  • Borden KLB, Campbell Dwyer EJ, Salvato MS (1998b) An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72:758–766

    CAS  Google Scholar 

  • Bowen MD, Peters CJ, Nichol SJ (1997) Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylog Evol 8:301–316

    Article  CAS  Google Scholar 

  • Bresnahan WA, Shenk T (2000) A subset of viral transcripts packaged within human cytomegalovirus particles. Science 288:2373–2376

    Article  PubMed  CAS  Google Scholar 

  • Bruns M, Gessner A, Lother H, Lehmann-Grube F (1988) Host cell-dependent homologous interference in lymphocytic choriomeningitis virus infection. Virology 166:133–139

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MBA (1980) The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol 30:275–331

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Southern PJ, Parekh BS, Wooddell MK, Oldstone MBA (1987) Site-specific antibodies define a cleavage site conserved among arenavirus GP-C glycoproteins. J Virol 61:982–985

    PubMed  CAS  Google Scholar 

  • Campbell Dwyer EJ, Lai H, MacDonald RC, Salvato MS, Borden KLB (2000) The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4 E and selectively represses translation in a RING-dependent manner. J Virol 74:3293–3300

    Article  CAS  Google Scholar 

  • Cao W, Oldstone MBA, De la Torre JC (1997) Viral persistent infection affects both transcriptional and posttranslational regulation of neuron-specific molecule GAP43. Virology 230:147–154

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Henry MD, Borrrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MBA (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:279–281

    Article  Google Scholar 

  • Carter MF, Biswal N, Rawls WE (1973) Characterization of the nucleic acid of Pichinde virus. J Virol 11:61–68

    PubMed  CAS  Google Scholar 

  • Clegg JCS, Wilson SM, Oram JD (1990) Nucleotide sequence of the S RNA of Lassa virus (Nigerian strain) and comparative analysis of arenavirus gene products. Virus Res 18:151–164

    Article  Google Scholar 

  • D’Aiutolo AC, Coto CE (1986) Vero cells persistently infected with Tacaribe virus: role of interfering particles in the establishment of the infection. Virus Res 6:235–244

    Article  PubMed  Google Scholar 

  • De BP, Banerjee AK (1997) Role of host proteins in gene expression of nonsegmented negative strand RNA viruses. Adv Virus Res 48:169–204

    Article  PubMed  CAS  Google Scholar 

  • De la Torre JC, Oldstone MBA (1992) Selective disruption of growth hormone transcription machinery by viral infection. Proc Natl Acad Sci USA 89:9939–9943

    Article  PubMed  Google Scholar 

  • De la Torre JC, Oldstone MBA (1996) Anatomy of viral persistence: mechanisms of virus persistence and associated disease. Adv Virus Res 46:311–343

    Article  PubMed  Google Scholar 

  • Djavani M, Lukashevich IS, Sanchez A, Nichol ST, Salvato MS (1997) Completion of the Lassa fever virus sequence and identification of a RING finger open reading frame at the 5’ end. Virology 235:414–418

    Article  PubMed  CAS  Google Scholar 

  • Dutko FJ, Oldstone MBA (1983) Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol 64:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Dutko FJ, Pfau CJ (1978) Arenavirus defective interfering particles mask the cell-killing potential of standard virus. J Gen Virol 38:195–208

    Article  PubMed  CAS  Google Scholar 

  • Farber FE, Rawls WE (1975) Isolation of ribosome-like structures from Pichinde virus. J Gen Virol 26:21–31

    Article  PubMed  CAS  Google Scholar 

  • Francis SJ, Southern PJ (1988) Deleted viral RNAs and lymphocytic choriomeningitis virus persistence in vitro. J Gen Virol 69:1893–1902

    Article  PubMed  Google Scholar 

  • Franze-Fernandez M-T, Zetina C, Iapalucci S, Lucero MA, Bouissou C, Lopez R, Rey O, Deheli M, Cohen GN, Zakin MM (1987) Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res 7:309–324

    Article  PubMed  CAS  Google Scholar 

  • Franze-Fernandez M-T, Iapalucci S, Lopez N, Rossi C (1993) Subgenomic RNAs of Tacaribe virus. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New York, pp 113–132

    Chapter  Google Scholar 

  • Fuller-Pace FV, Southern PJ (1989) Detection of virus-specific RNA-dependent RNA polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: in vitro synthesis of full-length viral RNA species. J Virol 63:1938–1944

    PubMed  CAS  Google Scholar 

  • Garcin D, Kolakofsky D (1990) A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 64:6196–6203

    PubMed  CAS  Google Scholar 

  • Garcin D, Kolakofsky D (1992) Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol 66:1370–1376

    PubMed  CAS  Google Scholar 

  • Garcin D, Rochat S, Kolakofsky D (1993) The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. J Virol 67:807–812

    PubMed  CAS  Google Scholar 

  • Gessner A, Lother H (1989) Homologous interference of lymphocytic choriomeningitis virus involves a ribavirin-susceptible block in virus replication. J Virol 63:1827–1832

    PubMed  CAS  Google Scholar 

  • Ghiringhelli PD, Rivera-Pomar RV, Lozano ME, Grau O, Romanowski V (1991) Molecular organization of Junin virus S RNA: complete nucleotide sequence, relationship with other members of the Arenaviridae and unusual secondary structures. J Gen Virol 72:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Gibadulinova A, Zelnik V, Reiserova L, Zavodska E, Zatovicova M, Ciampor F, Pastorekova S, Pastorek J (1998) Sequence and characterisation of the Z gene encoding ring finger protein of the lymphocytic choriomeningitis virus MX strain. Acta Virol 42:369–374

    PubMed  CAS  Google Scholar 

  • Harnish DG, Polyak SJ, Rawls WE (1993) Arenavirus replication: molecular dissection of the role of protein and RNA. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New York, pp 157–174

    Chapter  Google Scholar 

  • Hotchin J (1962) The biology of lymphocytic choriomeningitis infection: virus-induced immune disease. Cold Spring Harbor Symp Quant Biol 27:479–499

    PubMed  CAS  Google Scholar 

  • Howard CR (1986) Arenaviruses. Perspectives in Medical Virology, Vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Howard CR, Buchmeier MJ (1983) A protein kinase activity in lymphocytic choriomeningitis virus and identification of the phosphorylated product using a monoclonal antibody. Virology 126:538–547

    Article  PubMed  CAS  Google Scholar 

  • Iapalucci S, Chernavsky A, Rossi C, Burgin MJ, Franze-Fernandez M-T (1994) Tacaribe virus gene expression in cytopathic and non-cytopathic infections. Virology 200:613–622

    Article  PubMed  CAS  Google Scholar 

  • Iapalucci S, Lopez R, Rey O, Lopez N, Franze-Fernandez M-T, Cohen GN, Lucero M, Ochoa A, Zakin MM (1989a) Tacaribe virus L gene encodes a protein of 2210 amino acid residues. Virology 170:40–47

    Article  CAS  Google Scholar 

  • Iapalucci S, Lopez N, Rey O, Zakin MM, Cohen GN, Franze-Fernandez M-T (1989b) The 5’ region of Tacaribe virus L RNA encodes a protein with a potential metal binding domain. Virology 173: 357–361

    Article  CAS  Google Scholar 

  • Klavinskis LS, Oldstone MBA (1989) Lymphocytic choriomeningitis virus selectively alters differentiated but not housekeeping functions: block in expression of growth hormone gene is at the level of transcriptional initiation. Virology 168:232–235

    Article  PubMed  CAS  Google Scholar 

  • Kolakofsky D, Garcin D (1993) The unusual mechanism of arenavirus RNA synthesis. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New York, pp 103–112

    Google Scholar 

  • Lai MMC (1998) Cellular factors in the transcription and replication of viral genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Novella IS, Teng MN, Oldstone MBA, De la Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic analogs. J Virol 74:3470–3477

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube F (1984) Portraits of viruses: arenaviruses. Intervirology 22:121–145

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube F, Slenczka W, Tees R (1969) A persistent and inapparent infection of L cells with the virus of lymphocytic choriomeningitis. J Gen Virol 5:63–81

    Article  PubMed  CAS  Google Scholar 

  • Leung W-C, Rawls WE (1977) Virion-associated ribosomes are not required for the replication of Pichinde virus. Virology 81:174–176

    Article  PubMed  CAS  Google Scholar 

  • Leung W-C, Leung MFKL, Rawls WE (1979) Distinctive RNA transcriptase, polyadenylic acid polymerase and polyuridylic acid polymerase activities associated with Pichinde virus. J Virol 30:98–107

    PubMed  CAS  Google Scholar 

  • Lin Y-J, Lai MMC (1993) Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J Virol 67:6110–6118

    PubMed  CAS  Google Scholar 

  • Lopez R, Franze-Fernandez MT (1985) Effect of Tacaribe virus infection on host cell protein and nucleic acid synthesis. J Gen Virol 66:1753–1761

    Article  PubMed  CAS  Google Scholar 

  • Lopez R, Grau O, Franze-Fernandez MT (1986) Effect of actinomycin D on arenavirus growth and estimation of the generation time for a virus particle. Virus Research 5:123–220

    Article  Google Scholar 

  • Lozano ME, Posik DM, Albarino CG, Schujman G, Ghiringhelli PD, Calderon G, Sabattini M, Romanowski V (1997) Characterization of arenaviruses using a family-specific primer set for RTPCR amplification and RFLP analysis. Its potential use for detection of uncharacterized arenaviruses. Virus Res 49:79–89

    Article  PubMed  CAS  Google Scholar 

  • Lukashevich IS, Djavani M, Shapiro K, Sanchez A, Ravkov E, Nichol ST, Salvato MS (1997) The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250kDa protein with monospecific antiserum. J Gen Virol 78:547–551

    PubMed  CAS  Google Scholar 

  • Lukashevich IS, Maryankova R, Vladyko AS, Nashkevich N, Koleda S, Djavani M, Horejsh D, Voitenok NN, Salvato MS (1999) Lassa and Mopeia virus replication in human monocytes/macrophages and in epithelial cells: different effects on IL-8 and TNF-alpha gene expression. J Med Virol 59: 552-560

    Google Scholar 

  • Meier E, Hermison GG, Schubert M (1987) Homotypic and heterotypic exclusion of vesicular stomatitis virus replication by high levels of recombinant polymerase protein L. J Virol 61:3133–3142

    PubMed  CAS  Google Scholar 

  • Mersich SE, Damonte EB, Coto CE (1981) Induction of RNA polymerase II activity in Junin virus-infected cells. Intervirology 16:123–127

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Schmaljohn C (2000) Accumulation of terminally deleted RNAs may play a role in Seoul virus persistence. J Virol 74:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1993) Concurrent sequence analysis of 5’ and 3’ RNA termini by intramolecular circularization reveals 5’ nontemplated bases and 3’ terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs. J Virol 67:2621–2627

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1994) Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68:7659–7664

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1997) A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J Virol 71:6757–6764

    PubMed  CAS  Google Scholar 

  • Murphy FA, Whitfield SG (1975) Morphology and morphogenesis of arenaviruses. Bull WHO 52: 409–419

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Buchmeier MJ (1982) Restricted expression of viral glycoprotein in cells of persistently infected mice. Nature 300:360–362

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Sinha YN, Blount P, Tishon A, Rodriguez M, Wedel R von, Lampert PW (1982) Virusinduced alterations in homeostasis: alterations in differentiated functions of infected cells in vivo. Science 218:1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Rodriguez M, Daughaday WH, Lampert PW (1984) Viral perturbation of endocrine function: disordered cell function leads to disturbed homeostasis and disease. Nature 307:278–281

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Peters CJ, Rollin PE, Ksiazek TG, Gray B, Waites KB, Stephensen CB (1997) Development of a reverse transcription-polymerase chain reaction assay for the diagnosis of lymphocytic choriomeningitis virus infection and its use in a prospective surveillance study. J Med Virol 51:107–114

    Article  PubMed  CAS  Google Scholar 

  • Pedersen IR (1979) Structural components and replication of arenaviruses. Adv Virus Res 24:277–330

    Article  PubMed  CAS  Google Scholar 

  • Polyak SJ, Rawls WE, Harnish DG (1991) Characterization of Pichinde virus infection of cells of the monocytic lineage. J Virol 65:3575–3582

    PubMed  CAS  Google Scholar 

  • Polyak SJ, Zheng S, Harnish DG (1995) Analysis of Pichinde arenavirus transcription and replication in human THP-1 monocytic cells. Virus Res 36:37–48

    Article  PubMed  CAS  Google Scholar 

  • Raju R, Raju L, Hacker D, Garcin D, Compans RW, Kolakofsky D (1990) Nontemplated bases at the 5’ ends of Tacaribe virus mRNAs. Virology 174:53–59

    Article  PubMed  CAS  Google Scholar 

  • Rawls WE, Banerjee SN, McMillan CA, Buchmeier MJ (1976) Inhibition of Pichinde virus replication by actinomycin D. J Gen Virol 33:421–134

    Article  PubMed  CAS  Google Scholar 

  • Reiserova L, Kaluzova M, Kaluz S, Willis AC, Zavada J, Zavodska E, Zavadova Z, Ciampor F, Pastorek J, Pastorekova S (1999) Identification of MaTu-MX agent as a new strain of lymphocytic choriomeningitis virus (LCMV) and serological indication of horizontal spread of LCMV in population. Virology 257:73–83

    Article  PubMed  CAS  Google Scholar 

  • Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Dutko FJ, Oldstone MBA (1985) The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J Virol 53:966–968

    PubMed  CAS  Google Scholar 

  • Romanowski V, Bishop DHL (1983) The formation of arenaviruses that are genetically diploid. Virology 126:87–95

    Article  PubMed  CAS  Google Scholar 

  • Romanowski V, Matsuura Y, Bishop DHL (1985) Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Res 3:101–114

    Article  PubMed  CAS  Google Scholar 

  • Rowe WP (1954) Studies on pathogenesis and immunity in lymphocytic choriomeningitis infection of the mouse. Res Rept Naval Med Res Inst 12:167–220

    Google Scholar 

  • Salvato MS (ed) (1993a) The Arenaviridae. Plenum Press, New York

    Google Scholar 

  • Salvato MS (1993b) Molecular biology of the prototype arenavirus,/lymphocytic choriomeningitis virus. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New York, pp 133–156

    Chapter  Google Scholar 

  • Salvato MS, Shimomaye EM (1989) The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173:1–10

    Article  PubMed  CAS  Google Scholar 

  • Salvato M, Shimomaye E, Southern P, Oldstone MBA (1988) Virus-lymphocyte interactions: IV. Molecular characterization of LCMV Armstrong (CTL+) small genomic segment and that of its variant, clone 13 (CTL-). Virology 164:517–522

    Article  PubMed  CAS  Google Scholar 

  • Salvato M, Shimomaye EM, Oldstone MBA (1989) The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology 169:377–384

    Article  PubMed  CAS  Google Scholar 

  • Salvato MS, Schweighofer KJ, Burns J, Shimomaye EM (1992) Biochemical and immunological evidence that the llkDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22:185–198

    Article  PubMed  CAS  Google Scholar 

  • Singh MK, Fuller-Pace FV, Buchmeier MJ, Southern PJ (1987) Analysis of the genomic L RNA segment of lymphocytic choriomeningitis virus. Virology 161:448–456

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ (1996) Arenaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, et al. (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 1505–1519

    Google Scholar 

  • Southern PJ, Singh MK, Riviere Y, Jacoby DR, Buchmeier MJ, Oldstone MBA (1987) Molecular characterization of the genomic S RNA segment from lymphocytic choriomeningitis virus. Virology 157:145–155

    Article  PubMed  CAS  Google Scholar 

  • Valsamakis A, Riviere Y, Oldstone MBA (1987) Perturbation of differentiated functions in vivo during persistent viral infection. III. Decreased growth hormone mRNA. Virology 156:214–220

    Article  PubMed  CAS  Google Scholar 

  • Welsh RM, Buchmeier MJ (1979) Protein analysis of defective interfering lymphocytic choriomeningitis virus and persistently infected cells. Virology 96:503–515

    Article  PubMed  CAS  Google Scholar 

  • Welsh RM, Oldstone MBA (1977) Inhibition of immunologic injury of cultured cells infected with lymphocytic choriomeningitis virus: role of defective interfering virus in regulating viral antigen expression. J Exp Med 145:1449–1468

    Article  PubMed  CAS  Google Scholar 

  • Wilson SM, Clegg JCS (1991) Sequence analysis of the S RNA of the African arenavirus Mopeia: an unusual secondary structure feature in the intergenic region. Virology 180:543–552

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari S, Nagy PD, Simon AE, Dreher TW (2000) CCA initiation boxes without unique promoter elements support in vitro transcription by three viral RNA-dependent RNA polymerases. RNA 6:698–707

    Article  PubMed  CAS  Google Scholar 

  • Young PR, Howard CR (1983) Fine structure of Pichinde virus nucleocapsids. J Gen Virol 64:833–842

    Article  PubMed  Google Scholar 

  • Young PR, Chanas AC, Lee SR, Gould EA, Howard CR (1987) Localization of an arenavirus protein in the nuclei of infected cells. J Gen Virol 68:2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Zeijst BAM van der, Bleumink N, Crawford LV, Swyryd EA, Stark GR (1983a) Viral proteins and RNAs in BHK cells persistently infected by lymphocytic choriomeningitis virus. J Virol 48:262–270

    Google Scholar 

  • Zeijst BAM van der, Noyes BE, Mirault M-E, Parker B, Osterhaus ADME, Swyryd EA, Bleumink N, Horzinek MC, Stark GR (1983b) Persistent infection of some standard cell lines by lymphocytic choriomeningitis virus: transmission of infection by an intracellular agent. J Virol 48:249–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, B.J., De La Torre, J.C., Southern, P.J. (2002). Arenaviruses: Genomic RNAs, Transcription, and Replication. In: Oldstone, M.B.A. (eds) Arenaviruses I. Current Topics in Microbiology and Immunology, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56029-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56029-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42244-0

  • Online ISBN: 978-3-642-56029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics