Skip to main content

Ab Initio QM/MM and Free Energy Calculations of Enzyme Reactions

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

Abstract

A recently developed computational approach to studying enzyme reactions is reviewed. This approach consists of three major components: a pseudobond ab initio QM/MM method which provides a consistent and well-defined potential energy surface, an efficient iterative optimization procedure which determines the reaction paths with a realistic enzyme environment, and the free energy calculations which take account of the fluctuation of enzyme system. The review describes the applications of this QM/MM free energy approach to simulate reactions in two enzymes: enolase and triosephosphate isomerase (TIM). The calculations on enolase provide the insight on how the structure of the enolase active site organized to catalyze two different reaction to achieve overall catalytic efficiency. The study of TIM indicated a dual pathway mechanism and a low-barrier hydrogen bond (LBHB) formed in the enediol intermediate. The LBHB is found to be very short with a distance of 2.46 Angstrom between two oxygen donor atoms, but its strength is only about 3–4 kcal/mol stronger than the normal hydrogen bond and even less than the ionic asymmetric hydrogen bond. That is much less than the value of 10–20 kcal/mol in the LBHB hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Hehre, L. Radom, P.R. Schleyer, and J.A. Pople. Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York, 1986.

    Google Scholar 

  2. R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, 1989.

    Google Scholar 

  3. A. Warshel. Computer Modeling of Chemical Reactions in Enzymes. John Wiley & Sons, Inc., New York, 1991.

    Google Scholar 

  4. Johan Aqvist and Arieh Warshel. Simulation of enzyme-reactions using valence-bond force-fields and other hybrid quantum-classical approaches. Chem. Rev., 93:2523–2544, 1993.

    Article  Google Scholar 

  5. Johan Aqvist and Michael Fothergill. Computer simulation of the triosephos-phate isomerase catalyzed reaction. J. Biol. Chem., 271:10010–10016, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. M. Fuxreiter and A. Warshel. Origin of the catalytic power of acetylcholinesterase: Computer simulation studies. J. Am. Chem. Soc., 120:183–194, 1998.

    Article  CAS  Google Scholar 

  7. Weitao Yang. Direct calculation of electron density in density-functional theory. Phys. Rev. Lett, 66:1438–1441, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Stefano Baroni and Paolo Giannozzi. Towards very large scale electronic structure calculations. Europhys. Lett, 17:547–552, 1992.

    Article  CAS  Google Scholar 

  9. S. Goedecker and L. Colombo. Efficient linear scaling algorithm for tight-binding molecular dynamics. Phys. Rev. Lett., 73:122–125, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. X.-P. Li, R. W. Nunes, and David Vanderbilt. Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B, 47:10891–10894, 1993.

    Article  CAS  Google Scholar 

  11. M. S. Daw. Model for energetics of solids based on the density matrix. Phys. Rev. B, 47:10895–10902, 1993.

    Article  Google Scholar 

  12. E. Hernandez and M. J. Gillan. Self-consistent first-principles techniques with linear scaling. Phys. Rev. B, 51:10157–10160, 1994.

    Article  Google Scholar 

  13. Walter Kohn. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett, 76:3168–3171, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. John M. Millam and Gustavo E. Scuseria. Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations. J. Chem. Phys., 106:5569, 1997.

    Article  CAS  Google Scholar 

  15. Andrew D. Daniels, John M. Willam, and Gustavo E. Scuseria. Semiempirical methods with conjugate gradient density matrix search to replace diagonal-ization for molecular systems containing thousands of atoms. J. Chem. Phys., 107:425–431, 1997.

    Article  CAS  Google Scholar 

  16. Francesco Mauri, Giulia Galli, and Rebeto Car. Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B, 47:9973–9976, 1993.

    Article  Google Scholar 

  17. Jeongnim Kim, Francesco Mauri, and Giulia Galli. Total energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B, 52:1640–1648, 1995.

    Article  CAS  Google Scholar 

  18. Pablo Ordejon, David Drabold, Mathew Grumbach, and Richard M Martin. Unconstrained minimization approach for electronic computations that scales linearly with system size. Phys. Rev. B, 48:14646–14649, 1993.

    Article  CAS  Google Scholar 

  19. Pablo Ordejön, E. Artacho, and J. M. Soler. Self-consistent order-n density functional calculations for very large systems. Phys. Rev. B, 53:R10441–R10444, 1996.

    Article  Google Scholar 

  20. W. Hierse and E. B. Stechel. Order-n methods in self-consistent density-functional calculations. Phys. Rev. B, 50:17811–17819, 1994.

    Article  CAS  Google Scholar 

  21. David A. Drabold and Otto F. Sankey. Maximum entropy approach for linear scaling in the electronic structure problem. Phys. Rev. Lett., 70:3631–3634, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. James J. P. Stewart. Application of localized molecular orbitals to the solution of the semiempirical self-consistent filed equations. Int. J. Quantum Chem., 58:133–146, 1996.

    Article  Google Scholar 

  23. Weitao Yang. Absolute energy minimum principles for linear-scaling electronic structure calculations. Phys. Rev. B, 56:9294–9297, 1997.

    Article  CAS  Google Scholar 

  24. Weitao Yang and José M. Pérez-Jordá. Linear scaling methods for electronic structure calculations. In P.v.R. Schleyer, editor, Encyclopedia of Computational Chemistry, pages 1496–1513. John Wiley & Sons, New York, 1998.

    Google Scholar 

  25. Weitao Yang and Tai-Sung Lee. A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys., 103:5674–5678, 1995.

    Article  CAS  Google Scholar 

  26. Tai-Sung Lee, Darrin York, and Weitao Yang. Linear-scaling semiempirical quantum calculations for macromolecules. J. Chem. Phys., 105:2744–2750, 1996.

    Article  CAS  Google Scholar 

  27. James P. Lewis, Jr. Charles W. Carter, Jan Hermans, Wei Pan, Tai-Sung Lee, and Weitao Yang. Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation. J. Am. Chem. Soc, 120:5407–5410, 1998.

    Article  CAS  Google Scholar 

  28. Darrin York, Tai-Sung Lee, and Weitao Yang. Quantum mechanical study of aqueous polarization effects on biological macromolecules. J. Am. Chem. Soc, Comm., 118:10940–10941, 1996.

    Article  CAS  Google Scholar 

  29. Darrin York, Taisung Lee, and Weitao Yang. Quantum mechanical treatment of biological macromolecules in solution using linear-scaling electronic structure methods. Phys. Rev. Lett, 80:5011–5014, 1998.

    Article  CAS  Google Scholar 

  30. Haiyan Liu, Marcus Elstner, Efthimios Kaxiras, Thomas Frauenheim, Jan Hermans, and Weitao Yang. Quantum mechanics simulation of protein dynamics on long timescale. PROTEINS-.Structure, Function, and Genetics, 44:484–489, 2001.

    Article  CAS  Google Scholar 

  31. Steven L. Dixon and Kenneth M. Merz Jr. Semiempirical molecular orbital calculations with linear system size scaling. J. Chem. Phys., 104:6643–6649, 1996.

    Article  CAS  Google Scholar 

  32. R. T. Gallant and A. St-Amant. Linear scaling for the charge density fitting procedure of the linear combination of gaussian-type orbitals density functional method. Chem. Phys. Lett., 256:569, 1996.

    Article  CAS  Google Scholar 

  33. Jiali. Gao. Methods and applications of combined quantum mechanical and molecular mechanical potentials. In Review in Computational Chemistry, vol 7, pages 119–185. VCH, New York, 1995.

    Google Scholar 

  34. Richard A Friesner and Michael D Beach. Quantum mechanical calculations on biological systems. Curr. Opin. Struct. Bio., 8:257–262, 1998.

    Article  CAS  Google Scholar 

  35. Kenneth M. Merz Jr. and Robert V. Stanton. Quantum mechanical /molecular mechanical (qm/mm) coupled potentials. In Encyclopedia of Computational Chemistry, pages 2330–2343. John Wiley & Sons, New York, 1998.

    Google Scholar 

  36. A. Warshel and M. Levitt. Theoretic studies of enzymic reactions: Dielectric electrostatic and steric stabilization if the carbonium ion in the reaction of lysozyme. J. Mol. Bio., 103:227, 1976.

    Article  CAS  Google Scholar 

  37. U. C. Singh and P.A. Kollman. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the ch_3cl +cl - exchange reaction and gas phase protonation of polyethers. J. Comp. Chem., 7:718–730, 1986.

    Article  CAS  Google Scholar 

  38. M. J. Field, P. A. Bash, and Martin Karplus. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem., 11:700–733, 1990.

    Article  CAS  Google Scholar 

  39. J. Gao and X. Xia. A priori evaluation of aqueous polarization effects through monte carlo qm-mm simulations. Science, 258:631, 1992.

    Article  PubMed  CAS  Google Scholar 

  40. R. V. Stanton, D. S. Hartsough, and K. M. Merz Jr. Calculation of solvation free energies using a density functional/molecular dynamics coupled potential. J. Phys. Chem., 97:11868, 1993.

    Article  CAS  Google Scholar 

  41. Vincent Thery, Daniel Rinaldi, and Jean-Louis Rivail. Quantum mechanical computations on very large molecular systems: The local self-consistent field method. J. Comp. Chem., 15:269, 1994.

    Article  CAS  Google Scholar 

  42. Feliu. Maseras and Keiji Morokuma. Imomm: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comp. Chem., 16:1170, 1995.

    Article  CAS  Google Scholar 

  43. Kirsten P. Eurenius, David C. Chatfield, Bernard R. Brooks, and Milan Ho-doscek. Enzyme mechanisms with hybrid quantum and molecular mechanical potentials, i. theoretical considerations. Int. J. Quantum. Chem., 60:1189–1200, 1996.

    Article  Google Scholar 

  44. Dirk Bakowies and Walter Thiel. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem., 100:10580–10594, 1996.

    Article  CAS  Google Scholar 

  45. Isaac B. Bersuker, Max K. Leong, James E. Boggs, and Robert S. Pearlman. A method of combined quantum nechanical (qm)/molecular mechanics (mm) treatment of large polyatomic systems with charge transfer between the qm and mm fragments. Int. J. Quantum. Chem., 63:1051–1063, 1997.

    CAS  Google Scholar 

  46. Jiali Gao, Patricia Amara, Cristolbal Alhambra, and Martin J. Field. A generalized hybrid orbital (gho) method for the treatment of boundary atoms in combined qm/mm calculations. J. Phys. Chem. A, 102:4714–4721, 1998.

    Article  CAS  Google Scholar 

  47. P. A. Bash, M. J. Field, R. C. Davenport, G. S. Petsko, D. Ringe, and Martin Karplus. Computer simulation of the enzyme reaction in triosepoosphate isomerase. Biochemistry, 30:5826–5832, 1991.

    Article  PubMed  CAS  Google Scholar 

  48. H. Liu, F. Muller-Plathe, and W. F. van Gunster en. A combined quantum/classical molecular dynamics study of the catalytic mechanism of hiv protease. J. Mol. Biol, 261:454–469, 1996.

    Article  PubMed  CAS  Google Scholar 

  49. Mark A. Cunningham, L. Lawrence Ho, Dzung T. Nguyen, Richard E. Gillan, and Paul A. Bash. Simulation of enzyme reaction mechanism of malate dehydrogenase. Biochemistry, 36:4800–4816, 1997.

    Article  PubMed  CAS  Google Scholar 

  50. K. M. Merz Jr. and L. Banci. Binding of bicarbonate to human carbonic anhydrase ii: a continuum of binding states. J. Am. Chem. Soc, 119:863–871, 1997.

    Article  CAS  Google Scholar 

  51. Cristobal Alhambra, Li Wu, Zhong-Yin Zhang, and Jiali Gao. Walden-inversion-enforced transition-state stabilization in a protein tyrosine phosphatase. J. Am. Chem. Soc, 120:3858–3866, 1998.

    Article  CAS  Google Scholar 

  52. Serge Antonczak, G. Monard, M. F. Ruiz-Lopez, and Jean-Louis Rivail. Modeling of peptide hydrolysis by thermolysin. a semiempirical and qm/mm study. J. Am. Chem. Soc, 120:8825–8833, 1998.

    Article  Google Scholar 

  53. C. Alhambra, J. Gao, J. C. Corchado, J. Villa, and D. G. Truhlar. Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction. J. Am. Chem. Soc, 121:2253–2258, 1999.

    Article  CAS  Google Scholar 

  54. J. Bentzien, R. P. Muller, J. Florian, and A. Warshel. Hybrid ab initio quantum mechanics/molecular mechanics calculations of free energy surfaces for enzymatic reactions: The nucleophilic attack in subtilisin. J. Phys. Chem. B, 102:2293–2301, 1998.

    Article  CAS  Google Scholar 

  55. Robert V. Stanton, Mikael Perakyla, Dirk Bakowies, and P. A. Kollman. Combined ab initio and free energy calculations to study reactions in enzymes and solution: Amide hydrolysis in trypsin and in aqueous system. J. Am. Chem. Soc, 120:3448–3457, 1998.

    Article  Google Scholar 

  56. Yingkai Zhang, Taisung Lee, and Weitao Yang. A pseudo-bond approach to combining quantum mechanical and molecualr mechanical methods. J. Chem. Phys., 110:46–54, 1999.

    Article  CAS  Google Scholar 

  57. P. D. Lyne, M. Hodoscek, and M. Karplus. A hybrid qm-mm potential employing hartree-fock or density functional methods in the quantum region. J. Phys. Chem. A, 103:3462–3471, 1999.

    Article  CAS  Google Scholar 

  58. M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello. A hybrid method for solutes in complex solvents: Density functional theory with empirical force fields. J. Chem. Phys., 110:10452–10467, 1999.

    Article  CAS  Google Scholar 

  59. Yingkai Zhang, Haiyan Liu, and Weitao Yang. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio qm/mm potential energy surface. J. Chem. Phys., 112:3483–3492, 2000.

    Article  CAS  Google Scholar 

  60. Haiyan Liu, Yingkai Zhang, and Weitao Yang. How is the active-site of enolase organized to achieve overall efficiency in catalyzing a two step reaction. J. Am. Chem. Soc, 122:6560–6570, 2000.

    Article  CAS  Google Scholar 

  61. Yingkai Zhang, Haiyan Liu, and Weitao Yang. Density functional theory qm/mm study of the reaction mechanism of triosephosphate isomerase. is there a low-barrier hydrogen bond involved ? J. Am. Chem. Soc, submitted.

    Google Scholar 

  62. Gerald Monard, Michel Loos, Vincent Thery, Kristofor Baka, and Jean-Lois Rivail. Hybrid classical quantum force field for modeling very large molecules. Int. J. Quantum. Chem., 58:153–159, 1996.

    Article  CAS  Google Scholar 

  63. Xavier Assfeld and Jean-Louis Rivail. Quantum chemical computations on parts of large molecules: the ab initio local self-consistent field approach. Chem. Phys. Lett, 263:100–106, 1996.

    Article  CAS  Google Scholar 

  64. H. B. Schlegel. Optimization of equilibrium geometries and transition structures. In K. P. Lawley, editor, Ab Initio Methods in Quantum Chemistry. Advances in Chemical Physics,Vol 67, pages 249–286. Wiley, New York, 1987.

    Google Scholar 

  65. P. Pulay and G. Fogarasi. Geometry optimization in redundant coordinates. J. Chem. Phys., 96:2856–2860, 1992.

    Article  CAS  Google Scholar 

  66. Chunyang Peng, Philippe Y. Ayala, H. Bernhard Schlegel, and Michael J. Frisch. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem., 17:49–56, 1996.

    Article  CAS  Google Scholar 

  67. Philippe Y. Ayala and H. Bernhard Schlegel. A combined nethod for determining reaction paths, minima, and transition state geometries. J. Chem. Phys., 107:375–384, 1997.

    Article  Google Scholar 

  68. Bela Paizs, Geza Fogarasi, and Peter Pulay. An efficient direct method for geometry optimization of large molecules in internal coordinates. J. Chem. Phys., 109:6571–6576, 1998.

    Article  CAS  Google Scholar 

  69. Odon Farkas and H. Bernhard Schlegel. Methods for geometry optimization of large molecules.i. an o(n2) algorithm for solving systems of linear equations for the transformation of coordinates and forces. J. Chem. Phys., 109:7100–7104, 1998.

    Article  CAS  Google Scholar 

  70. Jay W. Ponder and Frederic M. Richards. An efficient newton-like method for molecular mechanics energy minimization of large molecules. J. Comp. Chem., 8:1016–1024, 1987.

    Article  CAS  Google Scholar 

  71. Philippe Derreumaux, Guihua Zhang, Tamar Schlick, and Bernard Brooks. A truncated newton minimizer adapted for charmm and biomolecular applications. J. Comp. Chem., 15:532–552, 1994.

    Article  CAS  Google Scholar 

  72. R. S. Dembo and T. Steihaug. Truncated-newton algorithms for large-scale unconstrained optimization. Mathematical Programming, 26:190–212, 1983.

    Article  Google Scholar 

  73. B. H. Besler, K. M. Merz Jr., and P. A. Kollman. Atomic charges derived from semiempirical methods. J. Comp. Chem., 11:431–439, 1990.

    Article  CAS  Google Scholar 

  74. R. Elber and M. Karplus. A method for determining reaction paths in large molecules: Application to myoglobin. Chem. Phys. Lett., 139:375–380, 1987.

    Article  CAS  Google Scholar 

  75. Stefan Fischer and Martin Karplus. Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in system with many degrees of freedom. Chem. Phys. Lett, 194:252–261, 1992.

    Article  CAS  Google Scholar 

  76. M. J. S. Dewar and S. Kirschner. Mindo/2 study of antiaromatic (“forbidden”) electrocyclic processes. J. Am. Chem. Soc, 93:4291, 1971.

    Article  CAS  Google Scholar 

  77. I. H. Williams and G. M. Maggiora. Use and abuse of the distinguished-coordinate method for transition -state structure searching. J. Mol. Structure, 89:365–378, 1982.

    Article  Google Scholar 

  78. M. J. Rothman and L. L. Lohr. Analysis of an energy minimization method for locating transition states of potential energy hypersurfaces. Chem. Phys. Lett, 70:405, 1980.

    Article  CAS  Google Scholar 

  79. Peter Scharfenberg. Theoretical analysis of constrained minimum energy paths. Chem. Phys. Lett, 79:115–117, 1981.

    Article  CAS  Google Scholar 

  80. J. Chandrasekhar, S. F. Smith, and W. L. Jorgensen. Theoretical examination of SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. J. Am. Chem. Soc., 107:154–162, 1985.

    Article  CAS  Google Scholar 

  81. J. Chandrasekhar and W. L. Jorgensen. Energy profile for a nonconcerted sat2 reaction in solution. J. Am. Chem. Soc, 107:2974–2975, 1985.

    Article  CAS  Google Scholar 

  82. W. L. Jorgensen. Free energy calculations: A breakthrough for modeling organic chemistry in solution. Acc Chem. Res., 22:184–189, 1989.

    Article  CAS  Google Scholar 

  83. T. M. Larsen, J. E. Wedekind, I. Rayment, and G. H. Reed. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of eno-lase: Structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 angstrom resolution. Biochemistry, 35:4349–4358, 1996.

    Article  PubMed  CAS  Google Scholar 

  84. E. Zhang, J. M. Brewer, W. Minor, L. A. Carreira, and L. Lebioda. Mechanism of enolase: The crystal structure of asymmetric dimer enolase-2-phospho-d-glycerate/enolase-phosphoenolpyruvate at 2.0 angstrom resolution. Biochemistry, 36:12526–12534, 1997.

    Article  PubMed  CAS  Google Scholar 

  85. J. A. Gerlt and P. G. Gassman. Understanding enzyme-catalyzed proton abstraction from carbon acids - details of stepwise mechanisms for beta-elimination reactions. J. Am. Chem. Soc, 114:5928–5934, 1992.

    Article  CAS  Google Scholar 

  86. J. P. Guthrie and R. Kluger. Electrostatic stabilization can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions. J. Am. Chem. Soc, 115:11569–11572, 1993.

    Article  CAS  Google Scholar 

  87. C. Alhambra, J. Gao, J. C. Corchado, and D. G. Truhlar. Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction. J. Am. Chem. Soc, 121:2253–2258, 1999.

    Article  CAS  Google Scholar 

  88. R. R. Poyner, L. T. Laughlin, and G. A. Sow and G. H. Reed. Toward identification of acid/base catalysts in the active site of enolase: Comparison of the properties of k345a, el68q, and e211q variants. Biochemistry, 35:1692–1699, 1996.

    Article  PubMed  CAS  Google Scholar 

  89. S. R. Anderson, V. E. Anderson, and J. R. Knowles. Promary and secondary kinetic isotope effects of the mechanism of yeast enolase. Biochemistry, 33:10545–10555, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. J. R. Knowles and W. J. Albery. Perfection in enzyme catalysis: The energetics of triosephosphate isomerase. Acc. Chem. Res., 10:105–111, 1977.

    Article  CAS  Google Scholar 

  91. J. A. Gerlt. Understanding the mechanisms and rates of enzyme-catalyzed proton transfer reactions to and from carbon. In S. M. Hecht, editor, Bioor-ganic Chemistry: Peptides and Proteins, pages 279–311. Oxford University Press, New York, 1998.

    Google Scholar 

  92. E. B. Nickbarg and J. R. Knowles. Triosephosphate isomerase: Energetics of the reaction catalyzed by the yeast enzyme expressed in escherichia coli. Biochemistry, 27:5939–5947, 1988.

    Article  PubMed  CAS  Google Scholar 

  93. Robert C. Davenport, Paul A. Bash, Barbara A. Seaton, Martin Karplus, Gregory A. Petsko, and Dagmar Ringe. Structrure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: An analogue of the intermediate on the reaction pathway. Biochemistry, 30:5821–5826, 1991.

    Article  PubMed  CAS  Google Scholar 

  94. Thomas K. Harris, Chitrananda Abeygunawardana, and Albert S. Mildvan. Nmr studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Biochemistry, 36:14661–14675, 1997.

    Article  PubMed  CAS  Google Scholar 

  95. Thomas K. Harris, Robert N. Cole, Prank I. Comer, and Albert S. Mildvan. Proton transfer in the mechanism of triosephosphate isomerase. Biochemistry, 37:16828–16838, 1998.

    Article  PubMed  CAS  Google Scholar 

  96. Giuliano Alagona, Peter Desmeules, Caterina Ghio, and Peter A. Kollman. Quantum mechanical and molecular mechanical studies on a model for the dihydroxyacetone phosphate-glyceraldehyde phosphate isomerization catalyzed by triosephosphate isomerase (tim). J. Am. Chem. Soc, 106:3623–3632, 1984.

    Article  CAS  Google Scholar 

  97. P. A. Bash, M. J. Field, R. C. Davenport, G. A. Petsko, D. Ringe, and M. Karplus. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry, 30:5826–5832, 1991.

    Article  PubMed  CAS  Google Scholar 

  98. Giuliano Alagona, Caterina Ghio, and Peter A. Kollman. Do enzyme stabilize transition states by electrostatic interactions or pka balance: The case of triose phosphate isomerase (tim)? J. Am. Chem. Soc, 117:9855–9862, 1995.

    Article  CAS  Google Scholar 

  99. Mikael Perakyla and Tapani A. Pakkanen. Ab initio models for receptor-ligand interactions in proteins. 4. model assembly study of the catalytic mechanism of triosephosphate isomerase. Proteins, 25:225–236, 1996.

    Article  PubMed  CAS  Google Scholar 

  100. W. J. Albery and J. R. Knowles. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry, 15:5631–5640, 1976.

    Article  PubMed  CAS  Google Scholar 

  101. J. A. Gerlt and P. G. Gassman. Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids,acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry, 32:11934–11952, 1993.

    Article  Google Scholar 

  102. W. W. Cleland and M. M. Kreevoy. Low-barrier hydrogen bonds and enzyme catalysis. Science, 264:1887–1990, 1994.

    Article  PubMed  CAS  Google Scholar 

  103. W. W. Cleland, P. A. Frey, and J. A. Gerlt. The low barrier hydrogen bond in enzymetic catalysis. J. Biol. Chem., 273:25529–25532, 1998.

    Article  PubMed  CAS  Google Scholar 

  104. J. A. Gerlt and P. G. Gassman. An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids importance of late transition-states in concerted mechanics. J. Am. Chem. Soc, 115:11552–11568, 1993.

    Article  CAS  Google Scholar 

  105. P. A. Frey, S. Whitt, and J. Tobin. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science, 264:1927–1930, 1994.

    Article  PubMed  CAS  Google Scholar 

  106. J. P. Guthrie. Short strong hydrogen bonds: Can they explain enzymic catalysis? Chem. Biol., 3:163–170, 1996.

    Article  PubMed  CAS  Google Scholar 

  107. A. Shan, S. Loh, and D. Herschlag. The energetics of hydrogen bonds in model systems: Implications for enzymatic catalysis. Science, 272:97–101, 1996.

    Article  PubMed  CAS  Google Scholar 

  108. B. Schwartz and D. G. Drueckhammer. A simple method for determining the relative strengths of normal and low-barrier hydrogen bonds in solution: implications to enzyme catalysis. J. Am. Chem. Soc, 117:11902–11905, 1995.

    Article  CAS  Google Scholar 

  109. Yoko Kato, L. M. Toledo, and J. Rebek, Jr. Energetics of a low barrier hydrogen bond in nonpolar solvents. J. Am. Chem. Soc, 118:8575–8579, 1996.

    Article  CAS  Google Scholar 

  110. A. Warshel, A. Papazyan, and P. A. Kollman. On low-barrier hydrogen bonds and enzyme catalysis. Science, 269:102–104, 1995.

    Article  PubMed  CAS  Google Scholar 

  111. A. Warshel and A. Papazyan. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds. Proc. Natl. Acad. Sci., 93:13665–13670, 1996.

    Article  PubMed  CAS  Google Scholar 

  112. T. Scheiner and T. Kar. The nonexistence of specially stabilized hydrogen-bonds in enzymes. J. Am. Chem. Soc, 117:6970–6975, 1995.

    Article  CAS  Google Scholar 

  113. E. L. Ash, J. L. Sudmeier, E. C. De Fabo, and W. W. Bachovchin. A lowbarrier hydrogen bond in the catalytic triad of serime proteases? theory versus experiment. Science, 278:1128–1132, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Liu, H., Yang, W. (2002). Ab Initio QM/MM and Free Energy Calculations of Enzyme Reactions. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics